The Two Phase method

The Two Phase method is an algorithm which solves an LP in standard form. Its input is :

• A linear program in standard inequality form

Its output is one out of the three following options :

- The Linear Program has at least one optimal solution that you should report.
- The Linear Program is unbounded, which means the objective function can take values as large as you wanted. In this case, one must give a parametric solution which shows that the value of the objective function can tend to +∞.
- The Linear Program is infeasible, which means that all the constraints cannot be satisfied simultaneously.

A workflow of the Two Phase method can be found below : the boxes with a thick boundary correspond to the cases where the algorithm terminates.

Usually, Phase Two is what is called in the literature the Simplex Method.

Some details about the workflow

The basic brick is a pivot, either to optimality or to feasibility. A pivot is an operation which takes you from one dictionary to another : it consists in choosing a entering variable, a leaving variable, and to use the row of the leaving variable to eliminate the entering variable from the set of non-basic variables.

In a pivot to optimality :

- The entering variable is as the one in the *z*-row (or *w*-row) which has the largest positive coefficient (in case of ties choose the one with the smallest subscript). If no entering variable can be chosen, it means that optimality is reached : an optimal solution is obtained by setting all the non-basic variables to 0.
 - The leaving variable is the first one to reach 0 when the entering variable is increased starting from 0. If there is no leaving variable it means that the problem is unbounded and you should report a parametric solution, see below.

In a **pivot to feasibility** :

- The entering variable is always *x*₀.
- The leaving variable is always the last one to become non-negative to 0 when *x*₀ increases. Actually, it is the one with the smallest "constant term".

Below is a (non exhaustive) list of things that you can check to detect potential mistakes.

- When you perform pivots to optimality, setting the non-basic variables to 0 must yield a feasible solution, that is all basic variables should be non-negative. If not, it means that you chose the wrong leaving variable.
- When you perform a pivot to optimality, the value of *z* (evaluated when the non basic variables are set to 0) must increase, or stay the same. If not, it means that you chose the wrong entering variable.
- When you perform the pivot to feasibility, setting the non-basic variables to 0 must yield a feasible solution, that is all basic variables should be non-negative. If not, it means that you chose the wrong leaving variable. This is precisely the point of the pivot to feasibility.
- When you perform a pivot to feasibility, the value of *w* (evaluated when the non basic variables are set to 0) decreases.
- When you are in Phase One and do pivots to optimality, the value of *w* (evaluated when the non basic variables are set to 0) can never be larger than 0. In particular, you can never be unbounded and you will always find a leaving variable.
- In Phase One, after you performed the pivot to feasibility, you must always choose x_0 as a leaving variable if possible. Indeed, it if you reach optimality with optimal value w = 0, it means that x_0 can be taken as a non basic variable, and in this case $w = -x_0$.

Examples : Phase Two

See the previous lecture notes on the topic:https://hugolav.github.io/teaching/pivoting_process.pdf and the practice for Quizz 1.

Example : Phase One, then Phase Two and Optimality is reached

See the example on Anstee's website, this is what we did in class : https://www.math.ubc.ca/~anstee/ math340/340anothertwophase.pdf

You should also check the practice for Quizz 2.

Example : unbounded problem

Here is an example of an unbounded problem. Let us start directly with a dictionary :

Following Anstee's rule, x_2 enters while x_5 leaves. It gives

x_4	=	8	$+x_1$	$-x_{5}$	
<i>x</i> ₂	=	3	$+2x_{1}$	$-x_{5}$	
<i>x</i> ₆	=	2	$-2x_1$	$+x_{5}$	$+2x_{3}$
\boldsymbol{z}	=	6	$+4x_{1}$	$-2x_{5}$	$+x_{3}$

Then x_1 enters and x_6 leaves :

<i>x</i> ₄	=	9	$-1/2 x_6$	$-1/2 x_5$	$+x_{3}$
<i>x</i> ₂	=	5	$-x_6$		$+2x_{3}$
x_1	=	1	$-1/2 x_6$	$+1/2 x_5$	$+x_{3}$
Z	=	10	$-2x_{6}$		$+5x_{3}$

Now x_3 enters but... no variable is driven to 0 while we increase x_3 . We can indefinitely increase x_3 to get larger and larger values of *z*. The LP is unbounded. More precisely, given a name to x_3 , namely *t*, we get a feasible solution by setting all other non basic variables to 0 :

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{pmatrix} = \begin{pmatrix} 1+t \\ 5+2t \\ t \\ 9+t \\ 0 \\ 0 \end{pmatrix}$$

while z = 10 + 5t. As long as $t \ge 0$, this solution is feasible. In other words, we have a set of feasible solutions, parametrized by t, such that $z \to +\infty$ if $t \to +\infty$. This is what it means for the LP to be unbounded.

Example : Phase One, then in Phase Two the LP is unbounded

See the example on Anstee's website:https://www.math.ubc.ca/~anstee/math340/340twophaselecture.pdf

Example : infeasible problem

Let us consider the LP in standard form

maximize
$$3x_1 - 5x_2$$

subject to $x_1 + x_2 \leq 1$
 $-x_1 - 2x_2 \leq -3$

Notice that the property for a LP of being infeasible depends only on the constraints, so that the objective function is not relevant in this example. We form a dictionary by adding slack variables.

If we set the non-basic variables to 0, then $x_4 < 0$ so the dictionary is not valid. We must go through Phase One of the Two Phase Method. We add an additional variable x_0 and change the objective function :

Then we do the pivot to feasibility : x_0 enters while the last variable to become non-negative when x_0 increases, namely x_4 , leaves. We get

Now we can do pivots to optimality. Following Anstee's rule, we choose x_2 as the entering variable while x_3 is leaving. We get

$$\begin{array}{rcl} x_2 &=& 4/3 & -2/3 \, x_1 & -1/3 \, x_3 & +1/3 \, x_4 \\ x_0 &=& 1/3 & +1/3 \, x_1 & -2/3 \, x_3 & +1/3 \, x_4 \\ w &=& -1/3 & -1/3 \, x_1 & -2/3 \, x_3 & -1/3 \, x_4 \end{array}$$

As all the coefficients in front of the non basic variables are negative, optimality is reached. However, as the optimal value of w, namely $-\frac{1}{3}$ is strictly negative, **the original LP is infeasible**.

To convince you of that (and we will understand why with duality later), notice that each of the slack variable (here x_3 and x_4) is naturally associated with a constraint (x_3 with the first one and x_4 with the second one). Now, at optimality the coefficient in front of x_3 is -2/3 while the one in front of x_4 is -1/3. Provided we forget about the minus sign, it tells us to do a clever combination of the equations in the constraints. Indeed, if we remember that the original constraint are

then they imply that

$$\frac{2}{3}(x_1 + x_2) + \frac{1}{3}(-x_1 - 2x_2) \leq \frac{2}{3} \times 1 + \frac{1}{3} \times (-3)$$

which reads

$$\frac{1}{3}x_1 \leqslant -\frac{1}{3}.$$

This clearly contradicts the non-negativity assumption on x_1 . In other words, there is no x_1, x_2 which are non-negative and which satisfy the constraints.