Math 340 Linear Programming. Two Phase Method Richard Anstee
In general, our initial dictionary for an LP with slack variables, may not yield a feasible solution.

$$
\begin{array}{ccccccc}
\text { Maximize } & -x_{1} & +3 x_{2} & +x_{3} & +x_{4} & & \\
& 2 x_{1} & +x_{2} & & -x_{4} & \leq 4 & x_{1}, x_{2}, x_{3} \geq 0 \\
& -2 x_{1} & & +x_{3} & +x_{4} & \leq-2 & \\
& 2 x_{2} & +2 x_{3} & & \leq 3 &
\end{array}
$$

We now add slack variables

$$
\begin{array}{rllllll}
x_{5} & = & 4 & -2 x_{1} & -x_{2} & & +x_{4} \\
x_{6} & = & -2 & +2 x_{1} & & -x_{3} & -x_{4} \\
x_{7} & = & 3 & & -2 x_{2} & -2 x_{3} & \\
z & = & & -x_{1} & +3 x_{2} & +x_{3} & +x_{4}
\end{array}
$$

A basic solution associated with the dictionary is obtained by setting the non basic variable equal to $0 x_{1}=x_{2}=x_{3}=x_{4}=0$ yielding $x_{5}=4, x_{6}=-2$ and $x_{7}=3$. This is not feasible since $x_{6}<0$. So how do we proceed? We add an artificial variable to achieve feasibility and then attempt to drive the artificial variable to 0 using our simple method. This is considered phase one of the two phase method.

We use the notation x_{0} for the artificial variable partly so that when applying 'Anstee's rule' for choosing a leaving variable that x_{0} would be preferred over other choices that tie x_{0}. We use the objective function maximize $w=-x_{0}$ to drive x_{0} to 0 .

$$
\begin{array}{llllllll}
x_{5} & = & 4 & -2 x_{1} & -x_{2} & & +x_{4} & +x_{0} \\
x_{6} & = & -2 & +2 x_{1} & & -x_{3} & -x_{4} & +x_{0} \\
x_{7} & = & 3 & & -2 x_{2} & -2 x_{3} & & +x_{0} \\
w & = & & & & & -x_{0}
\end{array}
$$

Now at this point you might say you are done since the coefficients in the w row are all negative but of course we haven't reached feasibility. The idea is we can to a special pivot to feasibility that results is a feasible dictionary but not optimal (in terms of minimizing $w=-x_{0}$).

We choose x_{0} to enter the basis and choose the leaving variable so we achieve feasibility

$$
\begin{aligned}
& x_{5}=4+x_{0} \geq 0 \text { so } x_{0} \geq-4 \\
& x_{6}=-2+x_{0} \geq 0 \text { so } x_{0} \geq 2 \\
& x_{7}=3+x_{0} \geq 0 \text { so } x_{0} \geq-3
\end{aligned}
$$

We must choose x_{0} to increase to 2 driving x_{6} to 0 and so x_{0} enters the basis and x_{6} leaves the basis.

$$
\begin{array}{rlllllll}
x_{5} & = & 6 & -4 x_{1} & -x_{2} & +x_{3} & +2 x_{4} & +x_{6} \\
x_{0} & = & 2 & -2 x_{1} & & +x_{3} & +x_{4} & +x_{6} \\
x_{7} & = & 5 & -2 x_{1} & -2 x_{2} & -x_{3} & +x_{4} & +x_{6} \\
w & = & -2 & +2 x_{1} & & -x_{3} & -x_{4} & -x_{6}
\end{array}
$$

Now after this special pivot to feasibility, we can proceed as before using the simplex method to minimize $w=-x_{0}$ and hence drive x_{0} to zero if possible. Note that the clever choice of x_{0} means
that if x_{0} is driven to zero in a pivot then it will be chosen to leave the basis (using Anstee's Rule) and hence we can say goodbye to x_{0} at this point.

For our particular dictionary above, we choose x_{1} to enter and then x_{0} leaves (oddly quick!)

$$
\begin{array}{cccccccc}
x_{5} & = & 2 & +2 x_{0} & -x_{2} & -x_{3} & & -x_{6} \\
x_{1} & = & 1 & -\frac{1}{2} x_{0} & & +\frac{1}{2} x_{3} & +\frac{1}{2} x_{4} & +\frac{1}{2} x_{6} \\
x_{7} & = & 3 & +x_{0} & -2 x_{2} & -2 x_{3} & & \\
w & = & -x_{0} & & & &
\end{array}
$$

We can now delete x_{0} and w since they are no longer needed:

$$
\begin{array}{llllll}
x_{5} & =2 & -x_{2} & -x_{3} & & -x_{6} \\
x_{1} & =1 & & +\frac{1}{2} x_{3} & +\frac{1}{2} x_{4} & +\frac{1}{2} x_{6} \\
x_{7} & =3 & -2 x_{2} & -2 x_{3}
\end{array}
$$

We do need z and then to minimize it.

$$
z=-x_{1}+3 x_{2}+x_{3}+x_{4}
$$

This is not so good since x_{1} is in the basis of our dictionary so we subsititue to eliminate x_{1} from z :
$z=-\left(1+\frac{1}{2} x_{3}+\frac{1}{2} x_{4}+\frac{1}{2} x_{6}\right)+3 x_{2}+x_{3}+x_{4}$
$z=-1+3 x_{2}+\frac{1}{2} x_{3}+\frac{1}{2} x_{4}-\frac{1}{2} x_{6}$
This yields the dictionary

$$
\begin{array}{ccccccc}
x_{5} & = & 2 & -x_{2} & -x_{3} & & -x_{6} \\
x_{1} & = & 1 & & +\frac{1}{2} x_{3} & +\frac{1}{2} x_{4} & +\frac{1}{2} x_{6} \\
x_{7} & = & 3 & -2 x_{2} & -2 x_{3} & & \\
z & = & -1 & +3 x_{2} & +\frac{1}{2} x_{3} & +\frac{1}{2} x_{4} & -\frac{1}{2} x_{6}
\end{array}
$$

We are now ready to proceed as before to maximize z. The computation of the new z row and the subsequent pivots are consiered the second phase of the two phase method.

So by our standard pivot process, we choose x_{2} to enter and x_{7} to leave.

$$
\begin{array}{cccccc}
x_{5} & = & \frac{1}{2} & +\frac{1}{2} x_{7} & & \\
x_{1} & = & 1 & & +\frac{1}{2} x_{3} & +\frac{1}{2} x_{4} \\
x_{2} & = & \frac{3}{2} & -\frac{1}{2} x_{6} \\
z & = & \frac{7}{2} & -\frac{3}{2} x_{7} & -x_{3} & \\
2 & \frac{5}{2} x_{3} & +\frac{1}{2} x_{4} & -\frac{1}{2} x_{6}
\end{array}
$$

We repeat our pivot process and choose x_{4} to enter but there is no leaving variable and so the LP is unbounded. We read off the solutions $\left(1+\frac{1}{2} t, \frac{3}{2}, 0, t, \frac{1}{2}, 0,0\right)^{T}$ for $t \geq 0$ with $z=\frac{7}{2}+\frac{1}{2} t$. When you have found an LP is unbounded you must give such a parametric solution demonstrating that it is unbounded.

