Math 340Linear Programming. Two Phase MethodRichard AnsteeIn general, our initial dictionary for an LP with slack variables, may not yield a feasible solution.

We now add slack variables

A basic solution associated with the dictionary is obtained by setting the non basic variable equal to $0 x_1 = x_2 = x_3 = x_4 = 0$ yielding $x_5 = 4$, $x_6 = -2$ and $x_7 = 3$. This is not feasible since $x_6 < 0$. So how do we proceed? We add an artificial variable to achieve feasibility and then attempt to drive the artificial variable to 0 using our simple method. This is considered *phase one* of the two phase method.

We use the notation x_0 for the artificial variable partly so that when applying 'Anstee's rule' for choosing a leaving variable that x_0 would be preferred over other choices that tie x_0 . We use the objective function maximize $w = -x_0$ to drive x_0 to 0.

Now at this point you might say you are done since the coefficients in the w row are all negative but of course we haven't reached feasibility. The idea is we can to a *special pivot to feasibility* that results is a feasible dictionary but not optimal (in terms of minimizing $w = -x_0$).

We choose x_0 to enter the basis and choose the leaving variable so we achieve feasibility

$$x_5 = 4 + x_0 \ge 0 \text{ so } x_0 \ge -4$$

 $x_6 = -2 + x_0 \ge 0 \text{ so } x_0 \ge 2$
 $x_7 = 3 + x_0 \ge 0 \text{ so } x_0 \ge -3$

We must choose x_0 to increase to 2 driving x_6 to 0 and so x_0 enters the basis and x_6 leaves the basis.

Now after this special pivot to feasibility, we can proceed as before using the simplex method to minimize $w = -x_0$ and hence drive x_0 to zero if possible. Note that the clever choice of x_0 means

that if x_0 is driven to zero in a pivot then it will be chosen to leave the basis (using Anstee's Rule) and hence we can say goodby to x_0 at this point.

For our particular dictionary above, we choose x_1 to enter and then x_0 leaves (oddly quick!)

We can now delete x_0 and w since they are no longer needed:

We do need z and then to minimize it.

 $z = -x_1 + 3x_2 + x_3 + x_4$

This is not so good since x_1 is in the basis of our dictionary so we substitute to eliminate x_1 from z:

$$z = -(1 + \frac{1}{2}x_3 + \frac{1}{2}x_4 + \frac{1}{2}x_6) + 3x_2 + x_3 + x_4$$

$$z = -1 + 3x_2 + \frac{1}{2}x_3 + \frac{1}{2}x_4 - \frac{1}{2}x_6$$

This yields the dictionary

This yields the dictionary

We are now ready to proceed as before to maximize z. The computation of the new z row and the subsequent pivots are consistent the *second phase* of the two phase method.

So by our standard pivot process, we choose x_2 to enter and x_7 to leave.

We repeat our pivot process and choose x_4 to enter but there is no leaving variable and so the LP is unbounded. We read off the solutions $(1 + \frac{1}{2}t, \frac{3}{2}, 0, t, \frac{1}{2}, 0, 0)^T$ for $t \ge 0$ with $z = \frac{7}{2} + \frac{1}{2}t$. When you have found an LP is unbounded you must give such a parametric solution demonstrating that it is unbounded.