MATH 340 Second Example of pivoting to optimal solution(s).
Richard Anstee
In general optimal solutions are not unique (although of course the optimal value of the objective function z would be unique!). Consider the following minor variant of our previous problem where we have increased the coefficient of x_{2} in the objective function from 3 to 5.

$$
\begin{array}{rrrrr}
\max & 4 x_{1}+5 x_{2} & +x_{3} & +x_{4} & \\
\\
x_{1}+2 x_{2} & & -x_{4} & \leq 3 \\
2 x_{1}+x_{2} & -x_{3} & +x_{4} & \leq 2 \\
& x_{2} & +x_{3} & & \leq 2
\end{array} \quad x_{1}, x_{2}, x_{3}, x_{4} \geq 0
$$

We add slack variables x_{5}, x_{6}, x_{7} corresponding to the difference between the left and right hand sides of the three constraints so that all 7 variables $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7} \geq 0$. We form our first dictionary

$$
\begin{aligned}
& x_{5}=3-x_{1}-2 x_{2} \quad+x_{4} \\
& x_{6}=2-2 x_{1}-x_{2}+x_{3}-x_{4} \\
& x_{7}=2 \quad-x_{2}-x_{3} \\
& z=4 x_{1}+5 x_{2}+x_{3}+x_{4}
\end{aligned}
$$

Now ignore Anstee's rule and have x_{1} enter and x_{6} leave which yields the dictionary

$$
\begin{array}{rlrrrr}
x_{5} & =2 & +\frac{1}{2} x_{6} & -\frac{3}{2} x_{2} & -\frac{1}{2} x_{3} & +\frac{3}{2} x_{4} \\
x_{1} & =1 & -\frac{1}{2} x_{6} & -\frac{1}{2} x_{2} & +\frac{1}{2} x_{3} & -\frac{1}{2} x_{4} \\
x_{7} & =2 & & -x_{2} & -x_{3} & \\
z & =4 & -2 x_{6} & +3 x_{2} & +3 x_{3} & -x_{4}
\end{array}
$$

Again ignore Anstee's rule and have x_{3} enter and x_{7} leave to yield the following dictionary.

$$
\begin{array}{rlrlrl}
x_{5} & = & 1 & +\frac{1}{2} x_{6} & -x_{2} & +\frac{1}{2} x_{7} \\
x_{1} & = & 2 & -\frac{3}{2} x_{4} \\
x_{3} & = & -\frac{1}{2} x_{6} & -x_{2} & -\frac{1}{2} x_{7} & -\frac{1}{2} x_{4} \\
z & =10 & -2 x_{6} & & -x_{2} & -x_{7} \\
& -3 x_{7} & -x_{4}
\end{array}
$$

There is an obvious solution to these 4 equations, namely $x_{5}=1, x_{1}=2, x_{3}=2$ and $x_{6}=x_{2}=$ $x_{7}=x_{4}=0$ with $z=10$. But now the equation $z=10-2 x_{6}-3 x_{7}-x_{4}$ combined with the three inequalities $x_{6} \geq 0, x_{7} \geq 0, x_{4} \geq 0$ yields $z \leq 10$. Thus we have found an optimal solution to the new LP. In fact $z \leq 10$ with equality if and only if $x_{6}=x_{7}=x_{4}=0$ (the coefficient of x_{2} is 0 in the expression for z). Now setting $x_{6}=x_{7}=x_{4}=0$ in our third dictionary yields

$$
\begin{aligned}
x_{5} & =1-x_{2} \\
x_{1} & =2-x_{2} \\
x_{3} & =2-x_{2} \\
z & =10
\end{aligned}
$$

We deduce that $0 \leq x_{2} \leq 1$ and setting $t=x_{2}$ we can write all possible optimal solutions to the LP as $x_{1}=2-t, x_{2}=t, x_{3}=2-t, x_{4}=0$ with $x_{5}=1-t, x_{6}=0$ and $x_{7}=0$ and $z=10$. Remember that you can check this.

Having pivoted through several dictionaries, it is interesting to see how the Revised Simplex

Formulas apply. Consider the final dictionary.

$$
\begin{array}{rlrlrl}
x_{5} & = & 1 & +\frac{1}{2} x_{6} & -x_{2} & +\frac{1}{2} x_{7} \\
x_{1} & = & +\frac{3}{2} x_{4} \\
x_{3} & = & -\frac{1}{2} x_{6} & -x_{2} & -\frac{1}{2} x_{7} & -\frac{1}{2} x_{4} \\
z & =10 & -2 x_{6} & & -x_{2} & -x_{7} \\
& -3 x_{7} & -x_{4}
\end{array}
$$

Recall that $[A I]$ is

x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}	x_{7}
1	2	0	-1	1	0	0
2	1	-1	1	0	1	0
0	1	1	0	0	0	1

The basic variables are x_{5}, x_{1}, x_{3} and so

$$
B=\left[\begin{array}{rrr}
1 & 1 & 0 \\
0 & 2 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

We compute (Wolfram? Matlab?)

$$
B^{-1}=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right]
$$

When we do the Revised Simplex Method, we will label the rows ad columns of B and B^{-1} since obviously row and column order matter when multiplying matrices. Imagine the non basic variables in the order $x_{2}, x_{4}, x_{6}, x_{7}$.

$$
B^{-1} A_{N}=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrrr}
1 & -\frac{3}{2} & -\frac{1}{2} & -\frac{1}{2} \\
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 & 1
\end{array}\right]
$$

The minus sign is set to trip you up! Then

$$
\begin{gathered}
-B^{-1} A_{n} \mathbf{x}_{N}=\left[\begin{array}{rrrr}
1 & -\frac{3}{2} & -\frac{1}{2} & -\frac{1}{2} \\
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\
1 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x_{2} \\
x_{4} \\
x_{6} \\
x_{7}
\end{array}\right]=-\left[\begin{array}{llll}
x_{2} & -\frac{3}{2} x_{4} & -\frac{1}{2} x_{6} & -\frac{1}{2} x_{7} \\
x_{2} & +\frac{1}{2} x_{4} & +\frac{1}{2} x_{6} & +\frac{1}{2} x_{7} \\
x_{2} & & & +x_{7}
\end{array}\right] \\
=\left[\begin{array}{rrrr}
-x_{2} & +\frac{3}{2} x_{4} & +\frac{1}{2} x_{6} & +\frac{1}{2} x_{7} \\
-x_{2} & -\frac{1}{2} x_{4} & -\frac{1}{2} x_{6} & -\frac{1}{2} x_{7} \\
-x_{2} & & -x_{7}
\end{array}\right]
\end{gathered}
$$

While these are not in the variable order of the dictionary above we can see that they are the same.

$$
B^{-1} \mathbf{b}=\left[\begin{array}{rrr}
1 & -\frac{1}{2} & -\frac{1}{2} \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
2
\end{array}\right]
$$

Thus

$$
B^{-1} \mathbf{b}-B^{-1} A_{N} \mathbf{x}_{N}=\left[\begin{array}{ccccc}
1 & -x_{2} & +\frac{3}{2} x_{4} & +\frac{1}{2} x_{6} & +\frac{1}{2} x_{7} \\
2 & -x_{2} & -\frac{1}{2} x_{4} & -\frac{1}{2} x_{6} & -\frac{1}{2} x_{7} \\
2 & -x_{2} & & & -x_{7}
\end{array}\right]
$$

which matches the final dictionary above.

