We considered the following LP in standard inequality form:

\[
\begin{align*}
\text{max} & \quad 4x_1 + 3x_2 + x_3 + x_4 \\
& \quad x_1 + 2x_2 - x_4 \leq 3 \quad x_1, x_2, x_3, x_4 \geq 0 \\
& \quad 2x_1 + x_2 - x_3 + x_4 \leq 2 \\
& \quad x_2 + x_3 \leq 2 \\
\end{align*}
\]

We add slack variables \(x_5, x_6, x_7\) corresponding to the difference between the left and right hand sides of the three constraints so that all 7 variables \(x_1, x_2, x_3, x_4, x_5, x_6, x_7 \geq 0\). We form our first dictionary:

\[
\begin{align*}
x_5 &= 3 - x_1 - 2x_2 + x_4 \\
x_6 &= 2 - 2x_1 - x_2 + x_3 - x_4 \\
x_7 &= 2 - x_2 - x_3 \\
z &= 4x_1 + 3x_2 + x_3 + x_4 \\
\end{align*}
\]

It is traditional to use \(z\) for the objective function. There is an obvious solution to these 4 equations, namely \(x_5 = 3, x_6 = 2, x_7 = 2\) and \(x_1 = x_2 = x_3 = x_4 = 0\) with \(z = 0\). (This is called a basic feasible solution.)

We now use Anstee's rule trying to increase a variable from 0 in the current obvious solution so we greedily choose \(x_1\) to increase and hence enter. We leave \(x_2 = x_3 = x_4 = 0\). The choice of \(x_1\) as the variable with the largest coefficient in dictionary expression for \(z\) (and in the case of ties choosing the variable of smallest subscript) is called Anstee's Rule in this course.

\[
\begin{align*}
x_5 &= 3 - x_1 \\
x_6 &= 2 - 2x_1 \\
x_7 &= 2 \\
z &= 4x_1 \\
\end{align*}
\]

We deduce that \(x_1\) can be increased to 1 while decreasing \(x_6\) to 0. We obtain a new dictionary by having \(x_1\) only appear on the left and \(x_6\) is now on the right of the equation signs.

\[
\begin{align*}
x_5 &= 2 + \frac{1}{2}x_6 - \frac{3}{2}x_2 - \frac{1}{2}x_3 + \frac{3}{2}x_4 \\
x_1 &= 1 - \frac{1}{2}x_6 - \frac{1}{2}x_2 + \frac{1}{2}x_3 - \frac{1}{2}x_4 \\
x_7 &= 2 - x_2 - x_3 \\
z &= 4 - 2x_6 + x_2 + 3x_3 - x_4 \\
\end{align*}
\]

There is an obvious solution to these 4 equations, namely \(x_5 = 2, x_1 = 1, x_7 = 2\) and \(x_6 = x_2 = x_3 = x_4 = 0\) with \(z = 4\). Note how I keep all the entries of each variable in neat columns. It makes adding and subtracting equations much more reliable.

By Anstee's rule we would wish to increase \(x_3\) leaving \(x_6 = x_2 = x_4 = 0\)

\[
\begin{align*}
x_5 &= 2 - \frac{1}{2}x_3 \\
x_1 &= 1 + \frac{1}{2}x_3 \\
x_7 &= 2 - x_3 \\
z &= 4 + 3x_3 \\
\end{align*}
\]

and we deduce that we could increase \(x_3\) to 2 while driving \(x_7\) to 0 and so we say \(x_3\) enters and \(x_7\) leaves.
There is an obvious solution to these 4 equations, namely \(x_5 = 1, x_1 = 2, x_3 = 2 \) and \(x_6 = x_2 = x_7 = x_4 = 0 \) with \(z = 10 \). But now the equation \(z = 10 - 2x_6 - 2x_2 - 3x_7 - x_4 \) combined with the four inequalities \(x_6 \geq 0, x_2 \geq 0, x_7 \geq 0, x_4 \geq 0 \) yields \(z \leq 10 \). Thus we have found an optimal solution to the LP. In fact \(z \leq 10 \) with equality if and only if \(x_6 = x_2 = x_7 = x_4 = 0 \). Now setting \(x_6 = x_2 = x_7 = x_4 = 0 \) in our third dictionary yields \(x_5 = 1, x_1 = 2, x_3 = 2 \). Thus we have found the unique optimal solution in this case.

In general optimal solutions are not unique (although of course the optimal value of the objective function \(z \) would be unique!). Consider the following minor variant of our problem where we have increased the coefficient of \(x_2 \) in the objective function from 3 to 5.

\[
\begin{align*}
\text{max} \quad & 4x_1 + 5x_2 + x_3 + x_4 \\
\text{s.t.} \quad & x_1 + 2x_2 - x_4 \leq 3 \quad & x_1, x_2, x_3, x_4 \geq 0 \\
& 2x_1 + x_2 - x_3 + x_4 \leq 2 \\
& x_2 + x_3 \leq 2 \\
\end{align*}
\]

We add slack variables \(x_5, x_6, x_7 \) corresponding to the difference between the left and right hand sides of the three constraints so that all 7 variables \(x_1, x_2, x_3, x_4, x_5, x_6, x_7 \geq 0 \). We form our first dictionary

\[
\begin{align*}
x_5 &= 3 & -2x_1 & -2x_2 & +x_4 \\
x_6 &= 2 & -2x_1 & -x_2 & +x_3 & -x_4 \\
x_7 &= 2 & -x_2 & -x_3 \\
z &= 4 & x_1 & +5x_2 & +x_3 & +x_4 \\
\end{align*}
\]

Now ignore Anstee’s rule and have \(x_1 \) enter and \(x_6 \) leave which yields the dictionary

\[
\begin{align*}
x_5 &= 2 & +1\frac{1}{2}x_6 & -\frac{3}{2}x_2 & -\frac{1}{2}x_3 & +\frac{3}{2}x_4 \\
x_1 &= 1 & -\frac{1}{2}x_6 & -\frac{1}{2}x_2 & +\frac{1}{2}x_3 & -\frac{1}{2}x_4 \\
x_7 &= 2 & -x_2 & -x_3 \\
z &= 4 & -2x_6 & +3x_2 & +3x_3 & -x_4 \\
\end{align*}
\]

Again ignore Anstee’s rule and have \(x_3 \) enter and \(x_7 \) leave to yield the following dictionary.

\[
\begin{align*}
x_5 &= 1 & +\frac{1}{2}x_6 & -x_2 & +\frac{1}{2}x_7 & +\frac{3}{2}x_4 \\
x_1 &= 2 & -\frac{1}{2}x_6 & -x_2 & -\frac{1}{2}x_7 & -\frac{1}{2}x_4 \\
x_3 &= 2 & -x_2 & -x_7 \\
z &= 10 & -2x_6 & -3x_7 & -x_4 \\
\end{align*}
\]

There is an obvious solution to these 4 equations, namely \(x_5 = 1, x_1 = 2, x_3 = 2 \) and \(x_6 = x_2 = x_7 = x_4 = 0 \) with \(z = 10 \). But now the equation \(z = 10 - 2x_6 - 3x_7 - x_4 \) combined with the three inequalities \(x_6 \geq 0, x_7 \geq 0, x_4 \geq 0 \) yields \(z \leq 10 \). Thus we have found an optimal solution to the new LP. In fact \(z \leq 10 \) with equality if and only if \(x_6 = x_7 = x_4 = 0 \) (the coefficient of \(x_2 \) is 0 in the expression for \(z \)). Now setting \(x_6 = x_7 = x_4 = 0 \) in our third dictionary yields

\[
\begin{align*}
x_5 &= 1 & -x_2 \\
x_1 &= 2 & -x_2 \\
x_3 &= 2 & -x_2 \\
z &= 10 \\
\end{align*}
\]
We deduce that $0 \leq x_2 \leq 1$ and setting $t = x_2$ we can write all possible optimal solutions to the LP as $x_1 = 2 - t$, $x_2 = t$, $x_3 = 2 - t$, $x_4 = 0$ with $x_5 = 1 - t$, $x_6 = 0$ and $x_7 = 0$ and $z = 10$. Remember that you can check this.