Magic Coefficients

We have stated that an optimal solution to the dual has

$$
y_{i}^{*}=- \text { coefficient of the } i \text { th slack of the primal. }
$$

To see the origin of these coefficients, we revisit our proof of Strong Duality.
Let A be an $m \times n$ matrix. We obtain the Revised Simplex Formulas (our dictionaries!) by first writing $A \mathbf{x} \leq \mathbf{b}$ as $[A I]\left[\begin{array}{c}\mathbf{x} \\ \mathbf{x}_{S}\end{array}\right]=\mathbf{b}$ where we have n original variables (typically our decision variables) and m slack variables. Then considering the variables split into the m basic variables and the n non basic variables for some column basis B of $[A I]$ we obtain the Revised Simplex Formulas.

$$
\begin{gathered}
\mathbf{x}_{B}=B^{-1} \mathbf{b}-B^{-1} A_{N} \mathbf{x}_{N} \\
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}\right) \mathbf{x}_{N}
\end{gathered}
$$

We note that $\mathbf{c}_{B}^{T}-\mathbf{c}_{B}^{T} B^{-1} B=\mathbf{0}$ and so $\left(\mathbf{c}_{B}^{T}-\mathbf{c}_{B}^{T} B^{-1} B\right) \mathbf{x}_{B}=0$. This enables us to write

$$
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}_{N}^{T}-\mathbf{c}_{B}^{T} B^{-1} A_{N}\right) \mathbf{x}_{N}+\left(\mathbf{c}_{B}^{T}-\mathbf{c}_{B}^{T} B^{-1} B\right) \mathbf{x}_{B} .
$$

But now we have a symmetric expression for all variables, namely

$$
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\sum_{i=1}^{n+m}\left(c_{i}-\mathbf{c}_{B}^{T} B^{-1} A_{i}\right) \mathbf{x}_{i}
$$

where A_{i} denotes the column of $[A I]$ indexed by x_{i}. We regroup the variables into the original variables \mathbf{x} and the slack variables \mathbf{x}_{S} to obtain a new expression for z :

$$
z=\mathbf{c}_{B}^{T} B^{-1} \mathbf{b}+\left(\mathbf{c}^{T}-\mathbf{c}_{B}^{T} B^{-1} A\right) \mathbf{x}+\left(\mathbf{0}^{T}-\mathbf{c}_{B}^{T} B^{-1} I\right) \mathbf{x}_{S}
$$

Thus the coefficients of \mathbf{x}_{S} in the final z-row are $\mathbf{0}^{T}-\mathbf{c}_{B}^{T} B^{-1} I=-\mathbf{y}^{T}$ when we have chosen $\mathbf{y}^{T}=\mathbf{c}_{B}^{T} B^{-1}$. Hence we have verified that the negatives of the coefficients of the slacks are the dual variables.

