Richard Anstee 2020
Certain payoff matrices reduce nicely and then are easy to solve. Let

$$
A=\left[\begin{array}{c}
\mathbf{r}_{1}^{T} \\
\mathbf{r}_{2}^{T} \\
\vdots \\
\mathbf{r}_{m}^{T}
\end{array}\right]=\left[\begin{array}{llll}
\mathbf{s}_{1} & \mathbf{s}_{2} & \cdots & \mathbf{s}_{n}
\end{array}\right]
$$

Theorem 1 Let A be a payoff matrix with $\mathbf{r}_{i} \leq \mathbf{r}_{j}$. Then there is an optimal strategy \mathbf{x}^{*} with $x_{i}^{*}=0$. Also if A is a payoff matrix with $\mathbf{s}_{i} \geq \mathbf{s}_{j}$. Then there is an optimal strategy \mathbf{y}^{*} with $y_{i}^{*}=0$.

Proof: From any optimal strategy \mathbf{x} for the row player, we can create a new optimal strategy $\mathbf{x}^{* *}$ with $\mathbf{x}^{* *}=\mathbf{x}$ except that $x_{i}^{* *}=0$ and $x_{j}^{* *}=x_{i}+x_{j}$.

As an example, consider the following payoff matrix:

$$
\left[\begin{array}{rrrrr}
-2 & 3 & 0 & -6 & -3 \\
0 & -4 & 9 & -2 & 1 \\
6 & -2 & 7 & 4 & 5 \\
7 & -3 & 8 & 3 & 2
\end{array}\right]
$$

Now column 3 is larger than column 4 and so the column player won't choose column 3. The new payoff matrix with column 3 deleted is

$$
\left[\begin{array}{rrrr}
-2 & 3 & -6 & -3 \\
0 & -4 & -2 & 1 \\
6 & -2 & 4 & 5 \\
7 & -3 & 3 & 2
\end{array}\right]
$$

Now column 1 is larger than column 3 and so the column player won't choose column 1. The new payoff matrix with column 1 deleted is

$$
\left[\begin{array}{rrr}
3 & -6 & -3 \\
-4 & -2 & 1 \\
-2 & 4 & 5 \\
-3 & 3 & 2
\end{array}\right]
$$

Now row 2 and row 4 are both smaller than row 3 and so the row player won't choose row 2 or row 4 . The new payoff matrix with rows 2 and 4 deleted is

$$
\left[\begin{array}{rrr}
3 & -6 & -3 \\
-2 & 4 & 5
\end{array}\right]
$$

Now column 3 is larger than column 2 and so the column player won't choose column 3 . The new payoff matrix with column 3 deleted is

$$
\left[\begin{array}{rr}
3 & -6 \\
-2 & 4
\end{array}\right]
$$

We compute the optimal strategy for the row player is $(2 / 5,3 / 5)^{T}$ with value 0 and the optimal strategy for the column player is $(2 / 3,1 / 3)^{T}$. Back in the original 4×5 game, the optimal strategies for the row and column player respectively are $\mathbf{x}^{*}=(2 / 5,0,3 / 5,0)^{T}$ and $\mathbf{y}^{*}=(0,2 / 3,0,1 / 3,0)^{T}$. This problem was more for amusement than anything but it repeatedly reminds us than an optimal player does not choose a bad strategy.

