This material is a problem from the text. Consider our standard primal dual pair:

$$
\begin{array}{lcllll} 
& \max \mathbf{c} \cdot \mathbf{x} & & \min & \mathbf{b} \cdot \mathbf{y} \\
\text { primal: } & A \mathbf{x} & \leq \mathbf{b} \\
& \mathbf{x} & \geq \mathbf{0} & & \text { dual: } & A^{T} \mathbf{y}
\end{array} \quad \mathbf{c}
$$

and consider the payoff matrix $B$ as follows

$$
B=\left[\begin{array}{ccc}
0 & -A^{T} & \mathbf{c} \\
A & 0 & -\mathbf{b} \\
-\mathbf{c}^{T} & \mathbf{b}^{T} & 0
\end{array}\right]
$$

If $A$ is of size $m \times n$, then $B$ is of size $(n+m+1) \times(n+m+1)$. We note that $B^{T}=-B$ and so $B$ is skew symmetric and so $v(B)=0$.

Theorem 0.1 The primal and dual have optimal solutions if and only if the game given by payoff matrix $B$ has an optimal mixed strategy $\mathbf{u}^{*}$ with the last strategy being non zero, namely $u_{n+m+1}^{*}>0$.

Proof: Assume $A$ is size $m \times n$. With $v(B)=0$, there is an optimal strategy $\mathbf{u}^{*}$ for the row player which is also an optimal strategy for the column player. We have
minimum entry of $\left(\mathbf{u}^{*}\right)^{T} B=0=$ maximum entry of $B \mathbf{u}^{*}$.
Now assume the primal dual pair have optimal solutions $\mathbf{x}^{*}=\left(x_{1}^{*}, x_{2},{ }^{*}, \ldots, x_{n}^{*}\right)^{T}$ and $\mathbf{y}^{*}=\left(y_{1}^{*}, y_{2}^{*}, \ldots, y_{m}^{*}\right.$. Let

$$
t=\frac{1}{\sum_{j} x_{j}^{*}+\sum_{i} y_{i}^{*}+1}
$$

Set $\overline{\mathbf{x}}=t \mathbf{x}^{*}$ and $\overline{\mathbf{y}}=t \mathbf{y}^{*}$. Let

$$
\mathbf{u}^{*}=\left[\begin{array}{c}
\overline{\mathbf{x}} \\
\overline{\mathbf{y}} \\
t
\end{array}\right]
$$

I claim $\mathbf{u}^{*}$ is an optimal strategy for either player. We note that $\mathbf{x}^{*} \geq \mathbf{0}$ and $\mathbf{y}^{*} \geq \mathbf{0}$ and definition of $t$ yields $\mathbf{u}^{*} \geq \mathbf{0}$. Also using the definition of $t$ we have $\sum_{k} u_{k}^{*}=1$. We compute

$$
\left(\mathbf{u}^{*}\right)^{T} B=\left[(\overline{\mathbf{y}})^{T} A-t \mathbf{c}^{T},-(\overline{\mathbf{x}})^{T} A^{T}+t \mathbf{b}^{T}, \overline{\mathbf{x}}^{T} \mathbf{c}-\overline{\mathbf{y}}^{T} \mathbf{b}\right]
$$

we have

$$
(\overline{\mathbf{x}})^{T} \mathbf{c}-(\overline{\mathbf{y}})^{T} \mathbf{b}=t\left(\left(\mathbf{x}^{*}\right)^{T} \mathbf{c}-\left(\mathbf{y}^{*}\right)^{T} \mathbf{b}\right)=0
$$

using Strong Duality. Now $A^{T} \mathbf{y}^{*} \geq \mathbf{c}$ so that $\left(\mathbf{y}^{*}\right)^{T} A \geq \mathbf{c}^{T}$ and so $\left(\mathbf{y}^{*}\right)^{T} A-\mathbf{c}^{T} \geq \mathbf{0}^{T}$. Thus

$$
(\overline{\mathbf{y}})^{T} A-t \mathbf{c}^{T}=t\left(\mathbf{y}^{*}\right)^{T} A-t \mathbf{c}^{T}=t\left(\left(\mathbf{y}^{*}\right)^{T} A-\mathbf{c}^{T}\right) \geq \mathbf{0}^{T} .
$$

Similarly $A \mathbf{x} \leq \mathbf{b}$ so that $\left(\mathbf{x}^{*}\right)^{T} A^{T} \leq \mathbf{b}^{T}$ and so $\left.-\mathbf{x}^{*}\right)^{T} A^{T}+\mathbf{b}^{T} \geq \mathbf{0}^{T}$. Thus

$$
-(\overline{\mathbf{x}})^{T} A^{T}+t \mathbf{b}^{T}=-t\left(\mathbf{x}^{*}\right)^{T} A^{T}+t \mathbf{b}^{T}=t\left(\left(-\mathbf{x}^{*}\right)^{T} A^{T}+\mathbf{b}^{T}\right) \geq \mathbf{0}^{T},
$$

Now we also have $\overline{\mathbf{x}}^{T} \mathbf{c}-\overline{\mathbf{y}}^{T} \mathbf{b}=t\left(\left(\mathbf{x}^{*}\right)^{T} \mathbf{c}-\left(\mathbf{y}^{*}\right)^{T} \mathbf{b}\right)=0$ by strong duality since $\mathbf{x}^{*}$ and $\mathbf{y}^{*}$ are optimal to their respective LP's. This proves that $\left(\mathbf{u}^{*}\right)^{T} B \geq \mathbf{0}$ and this is enough to make $\mathbf{u}^{*}$ optimal in view of $v(B)=0$. Moreover $\mathbf{u}^{*}$ has its last entry $t>0$. This completes the 'only if' half of the if and only if proof.

Now assume we have an optimal solution $\mathbf{u}^{*}$ to the game given by $B$ where

$$
\mathbf{u}^{*}=\left[\begin{array}{c}
\overline{\mathbf{x}} \\
\overline{\mathbf{y}} \\
t
\end{array}\right]
$$

We have $\overline{\mathbf{x}} \geq \mathbf{0}$ and $\overline{\mathbf{y}} \geq \mathbf{0}$ and $u_{m+n+1}^{*}=t>0$. We claim we obtain optimal solutions to the primal dual pair by setting

$$
\mathbf{x}^{*}=t \overline{\mathbf{x}}, \quad \mathbf{y}^{*}=t \overline{\mathbf{y}} .
$$

Given $v(B)=0$, we have 0 is the minimum entry of $\left(\mathbf{u}^{*}\right)^{T} B$. Thus
$(\overline{\mathbf{y}})^{T} A-t \mathbf{c}^{t} \geq \mathbf{0}$
$(-\overline{\mathbf{x}})^{T} A^{T}+t \mathbf{b}^{T} \geq \mathbf{0}$
$(\overline{\mathbf{x}})^{T} \mathbf{c}-(\overline{\mathbf{y}})^{T} \mathbf{b} \geq 0$
Rewriting in terms of $\mathbf{x}^{*}, \mathbf{y}^{*}$ (and using $t>0$ ), we obtain
$\left(\mathbf{y}^{*}\right) A-\mathbf{c}^{T} \geq \mathbf{0}$ which is $A^{T} \mathbf{y}^{*} \geq c$,
$\left(-x^{*}\right)^{T} A^{T}+\mathbf{b} \geq \mathbf{0}$ which is $A \mathbf{x}^{*} \leq \mathbf{b}$.
$\left(\mathbf{x}^{*}\right)^{T} \mathbf{c}-\left(\mathbf{y}^{*}\right)^{T} \mathbf{b} \geq 0$ which is $\mathbf{x}^{*} \cdot \mathbf{c} \geq \mathbf{y}^{*} \cdot \mathbf{b}$.
We have $\overline{\mathbf{x}} \geq \mathbf{0}$ and $\overline{\mathbf{y}} \geq \mathbf{0}$ and so $\mathbf{x}^{*} \geq \mathbf{0}$ and $\mathbf{y}^{*} \geq \mathbf{0}$. Thus $\mathbf{x}^{*}$ is feasible to the primal and $\mathbf{y}^{*}$ is feasible to the dual. Weak duality gives us that $\mathbf{x}^{*} \cdot \mathbf{c} \leq \mathbf{y}^{*} \cdot \mathbf{b}$ with equality if and only if $\mathbf{x}^{*}$ is optimal to the primal and $\mathbf{y}^{*}$ is optimal to the dual. But we already have that $\mathbf{x}^{*} \cdot \mathbf{c} \geq \mathbf{y}^{*} \cdot \mathbf{b}$ and so $\mathbf{x}^{*} \cdot \mathbf{c}=\mathbf{y}^{*} \cdot \mathbf{b}$. We now conclude that $\mathbf{x}^{*}$ is optimal to the primal and $\mathbf{y}^{*}$ is optimal to the dual completing the 'if' portion of the proof.

