Math 340 Two Person Zero Sum Games correspond to LP Theory Richard Anstee 2020

This material is a problem from the text. Consider our standard primal dual pair:

and consider the payoff matrix B as follows

$$B = \begin{bmatrix} 0 & -A^T & \mathbf{c} \\ A & 0 & -\mathbf{b} \\ -\mathbf{c}^T & \mathbf{b}^T & 0 \end{bmatrix}.$$

If A is of size $m \times n$, then B is of size $(n+m+1) \times (n+m+1)$. We note that $B^T = -B$ and so B is skew symmetric and so v(B) = 0.

Theorem 0.1 The primal and dual have optimal solutions if and only if the game given by payoff matrix B has an optimal mixed strategy \mathbf{u}^* with the last strategy being non zero, namely $u_{n+m+1}^* > 0$.

Proof: Assume A is size $m \times n$. With v(B) = 0, there is an optimal strategy \mathbf{u}^* for the row player which is also an optimal strategy for the column player. We have

minimum entry of $(\mathbf{u}^*)^T B = 0$ = maximum entry of $B\mathbf{u}^*$.

Now assume the primal dual pair have optimal solutions $\mathbf{x}^* = (x_1^*, x_2, *, \dots, x_n^*)^T$ and $\mathbf{y}^* = (y_1^*, y_2^*, \dots, y_m^*)$. Let

$$t = \frac{1}{\sum_{j} x_{j}^{*} + \sum_{i} y_{i}^{*} + 1}$$

Set $\bar{\mathbf{x}} = t\mathbf{x}^*$ and $\bar{\mathbf{y}} = t\mathbf{y}^*$. Let

$$\mathbf{u}^* = \left[\begin{array}{c} \bar{\mathbf{x}} \\ \bar{\mathbf{y}} \\ t \end{array} \right]$$

I claim \mathbf{u}^* is an optimal strategy for either player. We note that $\mathbf{x}^* \geq \mathbf{0}$ and $\mathbf{y}^* \geq \mathbf{0}$ and definition of t yields $\mathbf{u}^* \geq \mathbf{0}$. Also using the definition of t we have $\sum_k u_k^* = 1$. We compute

$$(\mathbf{u}^*)^T B = [(\bar{\mathbf{y}})^T A - t\mathbf{c}^T, -(\bar{\mathbf{x}})^T A^T + t\mathbf{b}^T, \bar{\mathbf{x}}^T \mathbf{c} - \bar{\mathbf{y}}^T \mathbf{b}]$$

we have

$$(\bar{\mathbf{x}})^T \mathbf{c} - (\bar{\mathbf{y}})^T \mathbf{b} = t((\mathbf{x}^*)^T \mathbf{c} - (\mathbf{y}^*)^T \mathbf{b}) = 0,$$

using Strong Duality. Now $A^T \mathbf{y}^* \geq \mathbf{c}$ so that $(\mathbf{y}^*)^T A \geq \mathbf{c}^T$ and so $(\mathbf{y}^*)^T A - \mathbf{c}^T \geq \mathbf{0}^T$. Thus

$$(\bar{\mathbf{y}})^T A - t\mathbf{c}^T = t(\mathbf{y}^*)^T A - t\mathbf{c}^T = t((\mathbf{y}^*)^T A - \mathbf{c}^T) \ge \mathbf{0}^T.$$

Similarly $A\mathbf{x} \leq \mathbf{b}$ so that $(\mathbf{x}^*)^T A^T \leq \mathbf{b}^T$ and so $-\mathbf{x}^*)^T A^T + \mathbf{b}^T \geq \mathbf{0}^T$. Thus

$$-(\bar{\mathbf{x}})^T A^T + t \mathbf{b}^T = -t(\mathbf{x}^*)^T A^T + t \mathbf{b}^T = t((-\mathbf{x}^*)^T A^T + \mathbf{b}^T) \ge \mathbf{0}^T,$$

Now we also have $\bar{\mathbf{x}}^T \mathbf{c} - \bar{\mathbf{y}}^T \mathbf{b} = t((\mathbf{x}^*)^T \mathbf{c} - (\mathbf{y}^*)^T \mathbf{b}) = 0$ by strong duality since \mathbf{x}^* and \mathbf{y}^* are optimal to their respective LP's. This proves that $(\mathbf{u}^*)^T B \ge \mathbf{0}$ and this is enough to make \mathbf{u}^* optimal in view of v(B) = 0. Moreover \mathbf{u}^* has its last entry t > 0. This completes the 'only if' half of the if and only if proof.

Now assume we have an optimal solution \mathbf{u}^* to the game given by B where

$$\mathbf{u}^* = \begin{bmatrix} \bar{\mathbf{x}} \\ \bar{\mathbf{y}} \\ t \end{bmatrix}$$

We have $\bar{\mathbf{x}} \geq \mathbf{0}$ and $\bar{\mathbf{y}} \geq \mathbf{0}$ and $u_{m+n+1}^* = t > 0$. We claim we obtain optimal solutions to the primal dual pair by setting

$$\mathbf{x}^* = t\bar{\mathbf{x}}, \qquad \mathbf{y}^* = t\bar{\mathbf{y}}.$$

Given v(B) = 0, we have 0 is the minimum entry of $(\mathbf{u}^*)^T B$. Thus

 $(\bar{\mathbf{y}})^T A - t \mathbf{c}^t \ge \mathbf{0}$ $(-\bar{\mathbf{x}})^T A^T + t \mathbf{b}^T \ge \mathbf{0}$ $(\bar{\mathbf{x}})^T \mathbf{c} - (\bar{\mathbf{y}})^T \mathbf{b} \ge 0$

Rewriting in terms of \mathbf{x}^* , \mathbf{y}^* (and using t > 0), we obtain

 $(\mathbf{y}^*)A - \mathbf{c}^T \ge \mathbf{0}$ which is $A^T \mathbf{y}^* \ge c$,

 $(-x^*)^T A^T + \mathbf{b} \ge \mathbf{0}$ which is $A\mathbf{x}^* \le \mathbf{b}$.

 $(\mathbf{x}^*)^T \mathbf{c} - (\mathbf{y}^*)^T \mathbf{b} \ge 0$ which is $\mathbf{x}^* \cdot \mathbf{c} \ge \mathbf{y}^* \cdot \mathbf{b}$.

We have $\bar{\mathbf{x}} \ge \mathbf{0}$ and $\bar{\mathbf{y}} \ge \mathbf{0}$ and so $\mathbf{x}^* \ge \mathbf{0}$ and $\mathbf{y}^* \ge \mathbf{0}$. Thus \mathbf{x}^* is feasible to the primal and \mathbf{y}^* is feasible to the dual. Weak duality gives us that $\mathbf{x}^* \cdot \mathbf{c} \le \mathbf{y}^* \cdot \mathbf{b}$ with equality if and only if \mathbf{x}^* is optimal to the primal and \mathbf{y}^* is optimal to the dual. But we already have that $\mathbf{x}^* \cdot \mathbf{c} \ge \mathbf{y}^* \cdot \mathbf{b}$ and so $\mathbf{x}^* \cdot \mathbf{c} = \mathbf{y}^* \cdot \mathbf{b}$. We now conclude that \mathbf{x}^* is optimal to the primal and \mathbf{y}^* is optimal to the primal and \mathbf{y}^* is optimal to the dual.