On the economic signification of dual variables: an example

A university ${ }^{1}$ wants to allocate its resources choosing how many slots to open in each major.

Major	Engineering	Math	Computer science
Tuition fees	4	1	2
Teaching time required	2	1	3
Space required	7	3	2

The university has 21 units of "Teaching time" and 12 units of "space".

[^0]A university ${ }^{1}$ wants to allocate its resources choosing how many slots to open in each major.

Major	Engineering	Math	Computer science
Tuition fees	4	1	2
Teaching time required	2	1	3
Space required	7	3	2

The university has 21 units of "Teaching time" and 12 units of "space".

- x_{1} number of engineering students,
- x_{2} number of math students,
- x_{3} number of computer science students.

[^1]If the university wants to maximize its revenue, it solves

$$
\begin{array}{clll}
\operatorname{maximize} & 4 x_{1}+x_{2}+2 x_{3} \\
\text { s.t. } & 2 x_{1}+x_{2}+3 x_{3} \leqslant 21
\end{array} \quad x_{1}, x_{2}, x_{3} \geqslant 0
$$

If the university wants to maximize its revenue, it solves

$$
\begin{array}{clll}
\operatorname{maximize} & 4 x_{1}+x_{2}+2 x_{3} \\
\text { s.t. } & 2 x_{1}+x_{2}+3 x_{3} \leqslant 21
\end{array} \quad x_{1}, x_{2}, x_{3} \geqslant 0
$$

With x_{4}, x_{5} the slack variables for respectively the first and second constraints and only one pivot (x_{3} enters, x_{5} leaves) we get the optimal dictionary:

$$
\begin{array}{ccccc}
x_{4} & =3 & +17 / 2 x_{1} & +7 / 2 x_{2} & +3 / 2 x_{5} \\
x_{3} & =6 & -7 / 2 x_{1} & -3 / 2 x_{2} & -1 / 2 x_{5} \\
z & =12 & -3 x_{1} & -2 x_{2} & -x_{5}
\end{array}
$$

If the university wants to maximize its revenue, it solves

$$
\begin{array}{clll}
\operatorname{maximize} & 4 x_{1}+x_{2}+2 x_{3} \\
\text { s.t. } & 2 x_{1}+x_{2}+3 x_{3} \leqslant 21
\end{array} \quad x_{1}, x_{2}, x_{3} \geqslant 0
$$

With x_{4}, x_{5} the slack variables for respectively the first and second constraints and only one pivot (x_{3} enters, x_{5} leaves) we get the optimal dictionary:

$$
\begin{array}{ccccc}
x_{4} & =3 & +17 / 2 x_{1} & +7 / 2 x_{2} & +3 / 2 x_{5} \\
x_{3} & =6 & -7 / 2 x_{1} & -3 / 2 x_{2} & -1 / 2 x_{5} \\
z & =12 & -3 x_{1} & -2 x_{2} & -x_{5}
\end{array}
$$

Optimality is reached and the only solution is $\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}0 \\ 0 \\ 6\end{array}\right)$, only computer scientists!

Now the dual problem:

$$
\begin{array}{cl}
\operatorname{minimize} & 21 y_{1}+12 y_{2} \\
\text { s.t. } & 2 y_{1}+7 y_{2} \geqslant 4 \\
& y_{1}+3 y_{2} \geqslant 1 \\
& 3 y_{1}+2 y_{2} \geqslant 2
\end{array} \quad y_{1}, y_{2} \geqslant 0
$$

Now the dual problem:

$$
\begin{array}{ccc}
\operatorname{minimize} & 21 y_{1}+12 y_{2} & \\
\text { s.t. } & 2 y_{1}+7 y_{2} \geqslant 4 \\
& y_{1}+3 y_{2} \geqslant 1 \\
& 3 y_{1}+2 y_{2} \geqslant 2 & y_{1}, y_{2} \geqslant 0 .
\end{array}
$$

As we have the final dictionary, we use it: an optimal dual solution is minus the coefficient in front of the slack variables. If some slack variables are basic, the associate dual value is 0 . So here $\binom{y_{1}}{y_{2}}=\binom{0}{1}$.

Economic interpretation:

- $y_{2}=1$. If the university increases its available space by 1 unit, its revenue goes up by 1 unit (at least for small increase). So the university should buy more office space if the price is less than 1 unit of space per unit of money.

Economic interpretation:

- $y_{2}=1$. If the university increases its available space by 1 unit, its revenue goes up by 1 unit (at least for small increase). So the university should buy more office space if the price is less than 1 unit of space per unit of money.
- $y_{1}=0$. If the university increases its available teaching time by 1 unit, its revenue does not change (at least for small increase). So the university has no incentive to increase its available teaching time. Actually with the optimal primal solution not all the available teaching time is used so it's normal that increasing it doesn't change anything.

An economic formulation of the dual

An subcontractor sells to the university units of teaching time and available space and wants to choose its prices.

- y_{1} is the price of a unit of teaching time.
- y_{2} is the price of a unit of space.

An economic formulation of the dual

An subcontractor sells to the university units of teaching time and available space and wants to choose its prices.

- y_{1} is the price of a unit of teaching time.
- y_{2} is the price of a unit of space.

The subcontractor wants to propose the most attractive deal to the university. So it wants to minimize

$$
21 y_{1}+12 y_{2}
$$

that is, what the university will pay for what it needs.

An economic formulation of the dual

An subcontractor sells to the university units of teaching time and available space and wants to choose its prices.

- y_{1} is the price of a unit of teaching time.
- y_{2} is the price of a unit of space.

The subcontractor wants to propose the most attractive deal to the university. So it wants to minimize

$$
21 y_{1}+12 y_{2}
$$

that is, what the university will pay for what it needs.
For the subcontractor to be profitable, considering engineering students there must hold

$$
\underbrace{2 y_{1}+7 y_{2}}
$$

Money paid by the university to the subcontracor to form a student

Money the subcontractor gets by forming itself the student

Repeating this for math and computer science students, we end up with

$\operatorname{minimize}$	$21 y_{1}+12 y_{2}$
s.t.	$2 y_{1}+7 y_{2} \geqslant 4$
	$y_{1}+3 y_{2} \geqslant 1$
	$3 y_{1}+2 y_{2} \geqslant 2$

The subcontractor solves the dual problem!

[^2]Repeating this for math and computer science students, we end up with

$\operatorname{minimize}$	$21 y_{1}+12 y_{2}$
s.t.	$2 y_{1}+7 y_{2} \geqslant 4$
	$y_{1}+3 y_{2} \geqslant 1$
	$3 y_{1}+2 y_{2} \geqslant 2$

The subcontractor solves the dual problem!
By strong duality, the university pays the subcontractor the same price that it will make as a revenue from tuition fees. In fact, neither the university nor the subcontractor end up making profit ${ }^{2}$.

[^3]
[^0]: ${ }^{1}$ This example is a bit cynical. Values and units are completely made up.

[^1]: ${ }^{1}$ This example is a bit cynical. Values and units are completely made up.

[^2]: ${ }^{2}$ In this idealized model.

[^3]: ${ }^{2}$ In this idealized model.

