MATH 223
There are three 2×2 matrices.
Richard Anstee
These notes came from Klaus Hoechsmann, Professor Emeritus. We use the idea of similarity that arises in diagonalization, nameley we say A is similar to B if there is an invertible matrix M with $A=M B M^{-1}$. Thus B is the just A viewed in a new coordinate system. Any 2×2 matrix is similar to one of the following three matrices

$$
\text { i) } \underset{\text { 'dilation' }}{\left[\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right],} \underset{\text { 'shear' }}{\left[\begin{array}{cc}
r & 1 \\
0 & r
\end{array}\right],} \quad \underset{\text { 'rotation' }}{\left[\begin{array}{cc}
r i i)
\end{array}\right.}
$$

Note

$$
\left[\begin{array}{cc}
r & -s \\
s & r
\end{array}\right]=\frac{1}{r^{2}+s^{2}}\left[\begin{array}{cc}
\frac{r}{r^{2}+s^{2}} & \frac{-s}{r^{2}+s^{2}} \\
\frac{r^{2}+s^{2}}{r^{2}} & \frac{r}{r^{2}+s^{2}}
\end{array}\right]=\rho\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

where $\rho=\frac{1}{r^{2}+s^{2}}$ and θ is chosen so that $\cos (\theta)=\frac{r}{r^{2}+s^{2}}$ and $\sin (\theta)=\frac{s}{r^{2}+s^{2}}$.
To arrive at Case i), we simply need two eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}$ so that $M=\left[\mathbf{v}_{1} \mathbf{v}_{2}\right]$ is invertible. For example if we have two different eigenvalues or a repeated root of $\operatorname{det}(A-\lambda I)$ where we can find two eigenvectors which are not multiples of one another.

In Cases ii) and iii), use the Cayley-Hamilton Theorem

$$
A^{2}-\operatorname{tr}(A) A+\operatorname{det}(A) I=0
$$

namely $(A-r I)^{2}=q I$ (completing the square) where $r=\frac{\operatorname{tr}(A)}{2}$ and $q=\frac{\operatorname{tr}(A)^{2}-4 \operatorname{det}(A)}{4}$.
We have $q \leq 0$ else we are in Case i).
Let \mathbf{y} be chosen so it is not an eigenvector of A (thus we are not in Case i)). Try $M=$ $[(A-r I) \mathbf{y} \alpha \mathbf{y}]$, where α is simply assumed to satisfy $\alpha \neq 0$ and we will specify it later.

$$
(A-r I) M=[q \mathbf{y} \alpha(A-r I) \mathbf{y}]=M\left[\begin{array}{cc}
0 & \alpha \\
q / \alpha & 0
\end{array}\right]
$$

Because \mathbf{y} is not an eigenvector of A and hence not an eigenvector of $A-r I$, then M is invertible. Manipulating

$$
M^{-1} A M=M^{-1}(A-r I) M+M^{-1}(r I) M=\left[\begin{array}{cc}
0 & \alpha \\
q / \alpha & 0
\end{array}\right]\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]=\left[\begin{array}{cc}
r & \alpha \\
q / \alpha & r
\end{array}\right] .
$$

For $q=0$, the case of repeated roots, then the existence of \mathbf{y} is crucial but we can take $\alpha=1$ and obtain Case ii), the Shear. For $q<0$, no real roots, then we can let $s=\sqrt{-q}$ so that $q=-s^{2}$ and set $\alpha=-s$. This yields Case iii).

This argument seems quite specific but there are ways to generalize and 'classify' all $n \times n$ matrices and obtain Jordan Canonical form.

