Math 223 Symmetric and Hermitian Matrices.
Richard Anstee
An $n \times n$ matrix Q is orthogonal if $Q^{T}=Q^{-1}$. The columns of Q would form an orthonormal basis for \mathbf{R}^{n}. The rows would also form an orthonormal basis for \mathbf{R}^{n}.

A matrix A is symmetric if $A^{T}=A$.
Theorem 1 Let A be a symmetric $n \times n$ matrix of real entries. Then there is an orthogonal matrix Q and a diagonal matrix D so that

$$
A Q=Q D, \quad \text { i.e. } Q^{T} A Q=D
$$

Note that the entries of Q and D are real.

There are various consequences to this result:
A symmetric matrix A is diagonalizable
A symmetric matrix A has an othonormal basis of eigenvectors.
A symmetric matrix A has real eigenvalues.
Proof: The proof begins with an appeal to the fundamental theorem of algebra applied to $\operatorname{det}(A-\lambda I)$ which asserts that the polynomial factors into linear factors and one of which yields an eigenvalue λ which may not be real.

Our second step it to show λ is real. Let \mathbf{x} be an eigenvector for λ so that $A \mathbf{x}=\lambda \mathbf{x}$. Again, if λ is not real we must allow for the possibility that \mathbf{x} is not a real vector.

Let $\mathbf{x}^{H}=\overline{\mathbf{x}}^{T}$ denote the conjugate transpose. It also applies to matrices as $A^{H}=\bar{A}^{T}$. We will revisit this theorem for Hermitian matrices, namely matrices A with $A^{H}=A$. Sensibly, Hermitian matrices are allowed to have complex entries.

Now $\mathbf{x}^{H} \mathbf{x} \geq 0$ with $\mathbf{x}^{H} \mathbf{x}=0$ if and only if $\mathbf{x}=\mathbf{0}$. We compute $\mathbf{x}^{H} A \mathbf{x}=\mathbf{x}^{H}(\lambda \mathbf{x})=\lambda \mathbf{x}^{H} \mathbf{x}$. Now taking complex conjugates and transpose $\left(\mathbf{x}^{H} A \mathbf{x}\right)^{H}=\mathbf{x}^{H} A^{H} \mathbf{x}$ using that $\left(\mathbf{x}^{H}\right)^{H}=\mathbf{x}$. Then $\left(\mathbf{x}^{H} A \mathbf{x}\right)^{H}=\mathbf{x}^{H} A \mathbf{x}=\lambda \mathbf{x}^{H} \mathbf{x}$ using $A^{H}=A$. Important to use our hypothesis that A is symmetric. But also $\left(\mathbf{x}^{H} A \mathbf{x}\right)^{H}=\bar{\lambda} \mathbf{x}^{H} \mathbf{x}=\bar{\lambda} \mathbf{x}^{H} \mathbf{x}$ (using $\mathbf{x}^{H} \mathbf{x} \in \mathbf{R}$). Knowing that $\mathbf{x}^{H} \mathbf{x}>0($ since $\mathbf{x} \neq \mathbf{0})$ we deduce that $\lambda=\bar{\lambda}$ and so we deduce that $\lambda \in \mathbf{R}$.

The rest of the proof uses induction on n. The result is easy for $n=1(Q=[1]!)$. Assume we have a real eigenvalue λ_{1} and a real eigenvector \mathbf{x}_{1} with $A \mathbf{x}_{1}=\lambda_{1} \mathbf{x}_{1}$ and $\left\|\mathbf{x}_{1}\right\|=1$. We can extend \mathbf{x}_{1} to an orthonormal basis $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}\right\}$. Let $M=\left[\mathbf{x}_{1} \mathbf{x}_{2} \cdots \mathbf{x}_{n}\right]$ be the matrix formed with columns $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{n}$. Then

$$
A M=M\left[\begin{array}{rr}
\lambda_{1} & B \\
\mathbf{0} & C
\end{array}\right] \text { or } M^{-1} A M=\left[\begin{array}{rr}
\lambda_{1} & B \\
\mathbf{0} & C
\end{array}\right]
$$

which is the sort of result from our assignments. But the matrix on the right is symmetric since it is equal to $M^{-1} A M=M^{T} A M$ (since the basis was orthonormal) and we note $\left(M^{T} A M\right)^{T}=M^{T} A M$ (using $A^{T}=A$ since A is symmetric). Then B is a $1 \times(n-1)$ zero matrix and C is a symmetric $(n-1) \times(n-1)$ matrix.

By induction there exists an orthogonal matrix N (with $N^{T}=N^{-1}$) and a diagonal matrix E with $N^{-1} C N=E$. We form a new orthognal matrix

$$
P=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\mathbf{0} & N
\end{array}\right]
$$

which has

$$
P^{-1}\left[\begin{array}{cc}
\lambda_{1} & \mathbf{0}^{T} \\
\mathbf{0} & C
\end{array}\right] P=\left[\begin{array}{ccc}
\lambda_{1} & 0 & \cdots \\
\mathbf{0} & E
\end{array}\right]
$$

This becomes

$$
P^{-1} M^{-1} A M P=\left[\begin{array}{ccc}
\lambda_{1} & 00 \cdots & 0 \\
\mathbf{0} & E
\end{array}\right]
$$

which is a diagonal matrix D. We note that $(M P)^{T}=P^{T} M^{T}=P^{-1} M^{-1}$ and so $Q=M P$ is an orthogonal matrix with $Q^{T} A Q=D$. This proves the result by induction.

