
Math 223 Symmetric and Hermitian Matrices. Richard Anstee
An n× n matrix Q is orthogonal if QT = Q−1. The columns of Q would form an orthonormal

basis for Rn. The rows would also form an orthonormal basis for Rn.
A matrix A is symmetric if AT = A.

Theorem 1 Let A be a symmetric n×n matrix of real entries. Then there is an orthogonal matrix
Q and a diagonal matrix D so that

AQ = QD, i.e. QTAQ = D.

Note that the entries of Q and D are real.

There are various consequences to this result:
A symmetric matrix A is diagonalizable
A symmetric matrix A has an othonormal basis of eigenvectors.
A symmetric matrix A has real eigenvalues.

Proof: The proof begins with an appeal to the fundamental theorem of algebra applied to
det(A − λI) which asserts that the polynomial factors into linear factors and one of which yields
an eigenvalue λ which may not be real.

Our second step it to show λ is real. Let x be an eigenvector for λ so that Ax = λx. Again, if
λ is not real we must allow for the possibility that x is not a real vector.

Let xH = xT denote the conjugate transpose. It also applies to matrices as AH = A
T
. We will

revisit this theorem for Hermitian matrices, namely matrices A with AH = A. Sensibly, Hermitian
matrices are allowed to have complex entries.

Now xHx ≥ 0 with xHx = 0 if and only if x = 0. We compute xHAx = xH(λx) = λxHx.

Now taking complex conjugates and transpose (xHAx)
H

= xHAHx using that (xH)H = x. Then
(xHAx)H = xHAx = λxHx using AH = A. Important to use our hypothesis that A is symmetric.
But also (xHAx)H = λxHx = λxHx (using xHx ∈ R). Knowing that xHx > 0 (since x 6= 0) we
deduce that λ = λ and so we deduce that λ ∈ R.

The rest of the proof uses induction on n. The result is easy for n = 1 (Q = [1]!). Assume
we have a real eigenvalue λ1 and a real eigenvector x1 with Ax1 = λ1x1 and ||x1|| = 1. We can
extend x1 to an orthonormal basis {x1,x2, . . . ,xn}. Let M = [x1 x2 · · ·xn] be the matrix formed
with columns x1,x2, . . . ,xn. Then

AM =M

[
λ1 B
0 C

]
or M−1AM =

[
λ1 B
0 C

]
.

which is the sort of result from our assignments. But the matrix on the right is symmetric since it is
equal to M−1AM =MTAM (since the basis was orthonormal) and we note (MTAM)T =MTAM
(using AT = A since A is symmetric). Then B is a 1× (n− 1) zero matrix and C is a symmetric
(n− 1)× (n− 1) matrix.

By induction there exists an orthogonal matrix N (with NT = N−1) and a diagonal matrix E
with N−1CN = E. We form a new orthognal matrix

P =

[
1 0 0 · · · 0
0 N

]



which has

P−1

[
λ1 0T

0 C

]
P =

[
λ1 0 0 · · · 0
0 E

]
This becomes

P−1M−1AMP =

[
λ1 0 0 · · · 0
0 E

]

which is a diagonal matrix D. We note that (MP )T = P TMT = P−1M−1 and so Q = MP is an
orthogonal matrix with QTAQ = D. This proves the result by induction.


