Math 223 Symmetric and Hermitian Matrices.

An $n \times n$ matrix Q is *orthogonal* if $Q^T = Q^{-1}$. The columns of Q would form an orthonormal basis for \mathbf{R}^n . The rows would also form an orthonormal basis for \mathbf{R}^n .

A matrix A is symmetric if $A^T = A$.

Theorem 1 Let A be a symmetric $n \times n$ matrix of real entries. Then there is an orthogonal matrix Q and a diagonal matrix D so that

AQ = QD, *i.e.* $Q^T AQ = D.$

Note that the entries of Q and D are real.

There are various consequences to this result:

A symmetric matrix A is diagonalizable

A symmetric matrix A has an othonormal basis of eigenvectors.

A symmetric matrix A has real eigenvalues.

Proof: The proof begins with an appeal to the fundamental theorem of algebra applied to $det(A - \lambda I)$ which asserts that the polynomial factors into linear factors and one of which yields an eigenvalue λ which may not be real.

Our second step it to show λ is real. Let **x** be an eigenvector for λ so that $A\mathbf{x} = \lambda \mathbf{x}$. Again, if λ is not real we must allow for the possibility that **x** is not a real vector.

Let $\mathbf{x}^H = \overline{\mathbf{x}}^T$ denote the conjugate transpose. It also applies to matrices as $A^H = \overline{A}^T$. We will revisit this theorem for Hermitian matrices, namely matrices A with $A^H = A$. Sensibly, Hermitian matrices are allowed to have complex entries.

Now $\mathbf{x}^H \mathbf{x} \ge 0$ with $\mathbf{x}^H \mathbf{x} = 0$ if and only if $\mathbf{x} = \mathbf{0}$. We compute $\mathbf{x}^H A \mathbf{x} = \mathbf{x}^H (\lambda \mathbf{x}) = \lambda \mathbf{x}^H \mathbf{x}$. Now taking complex conjugates and transpose $(\mathbf{x}^H A \mathbf{x})^H = \mathbf{x}^H A^H \mathbf{x}$ using that $(\mathbf{x}^H)^H = \mathbf{x}$. Then $(\mathbf{x}^H A \mathbf{x})^H = \mathbf{x}^H A \mathbf{x} = \lambda \mathbf{x}^H \mathbf{x}$ using $A^H = A$. Important to use our hypothesis that A is symmetric. But also $(\mathbf{x}^H A \mathbf{x})^H = \overline{\lambda} \mathbf{x}^H \mathbf{x} = \overline{\lambda} \mathbf{x}^H \mathbf{x}$ (using $\mathbf{x}^H \mathbf{x} \in \mathbf{R}$). Knowing that $\mathbf{x}^H \mathbf{x} > 0$ (since $\mathbf{x} \neq \mathbf{0}$) we deduce that $\lambda = \overline{\lambda}$ and so we deduce that $\lambda \in \mathbf{R}$.

The rest of the proof uses induction on n. The result is easy for n = 1 (Q = [1]!). Assume we have a real eigenvalue λ_1 and a real eigenvector \mathbf{x}_1 with $A\mathbf{x}_1 = \lambda_1\mathbf{x}_1$ and $||\mathbf{x}_1|| = 1$. We can extend \mathbf{x}_1 to an orthonormal basis $\{\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n\}$. Let $M = [\mathbf{x}_1 \mathbf{x}_2 \cdots \mathbf{x}_n]$ be the matrix formed with columns $\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n$. Then

$$AM = M \begin{bmatrix} \lambda_1 & B \\ \mathbf{0} & C \end{bmatrix}$$
 or $M^{-1}AM = \begin{bmatrix} \lambda_1 & B \\ \mathbf{0} & C \end{bmatrix}$.

which is the sort of result from our assignments. But the matrix on the right is symmetric since it is equal to $M^{-1}AM = M^TAM$ (since the basis was orthonormal) and we note $(M^TAM)^T = M^TAM$ (using $A^T = A$ since A is symmetric). Then B is a $1 \times (n-1)$ zero matrix and C is a symmetric $(n-1) \times (n-1)$ matrix.

By induction there exists an orthogonal matrix N (with $N^T = N^{-1}$) and a diagonal matrix E with $N^{-1}CN = E$. We form a new orthogonal matrix

$$P = \left[\begin{array}{cc} 1 & 0 \ 0 & \cdots & 0 \\ \mathbf{0} & N \end{array} \right]$$

which has

$$P^{-1} \begin{bmatrix} \lambda_1 & \mathbf{0}^T \\ \mathbf{0} & C \end{bmatrix} P = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ \mathbf{0} & E \end{bmatrix}$$

This becomes

$$P^{-1}M^{-1}AMP = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ \mathbf{0} & E \end{bmatrix}$$

which is a diagonal matrix D. We note that $(MP)^T = P^T M^T = P^{-1} M^{-1}$ and so Q = MP is an orthogonal matrix with $Q^T A Q = D$. This proves the result by induction.