NAME:

Student no.:

Math 223 - Midterm 2 - Friday November 7, 2008 - six pages

Please show your work. I expect some arguments for full credit.

1. [20 marks] Consider a 4×6 matrix A

$$
A=\left[\begin{array}{llllll}
0 & 1 & 2 & 1 & 1 & 1 \\
0 & 2 & 4 & 3 & 2 & 3 \\
0 & 2 & 4 & 3 & 3 & 5 \\
0 & 1 & 2 & 2 & 2 & 4
\end{array}\right]
$$

There is a invertible matrix E so that

$$
E A=\left[\begin{array}{llllll}
0 & 1 & 2 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

a) [3 marks] What is $\operatorname{rank}(A)$?
b) [8 marks] Give a basis for the row space of A and a basis for the column space of A.
c) $[4$ marks] Give a basis for the null space (A).
d) [5 marks] Consider a vector $\mathbf{c} \in \mathbf{R}^{4}$ so that $A \mathbf{x}=\mathbf{c}$ is consistent (i.e. the system of equations has a solution). Let $A^{\prime}=[\mathbf{c} \mid A]$, i.e. A^{\prime} is the 4×7 matrix with \mathbf{c} being the first column and the remainder being the columns of A. What is $\operatorname{rank}\left(A^{\prime}\right)$?
2. [15 marks] For the matrix

$$
A=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

determine explicit matrices M, D, M^{-1} where D is a diagonal matrix, so that $A=M D M^{-1}$. 3. [20 marks]

$$
\begin{aligned}
& \text { Let } \mathbf{u}_{1}=\left[\begin{array}{c}
2 \\
0 \\
-1
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right], \quad \mathbf{u}_{3}=\left[\begin{array}{l}
0 \\
1 \\
3
\end{array}\right] \\
& \text { NOTE: } \quad\left[\begin{array}{ccc}
2 & 1 & 0 \\
0 & 1 & 1 \\
-1 & 2 & 3
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -3 & 1 \\
-1 & 6 & -2 \\
1 & -5 & 2
\end{array}\right]
\end{aligned}
$$

Let $T: \mathbf{R}^{3} \longrightarrow \mathbf{R}^{3}$ be the linear transformation satisfying

$$
T\left(\mathbf{u}_{1}\right)=\mathbf{u}_{2}, \quad T\left(\mathbf{u}_{2}\right)=2 \mathbf{u}_{3}, \quad T\left(\mathbf{u}_{3}\right)=3 \mathbf{u}_{1} .
$$

a) [5 marks] Give the matrix representation of T with respect to the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$.
b) [10 marks] Give the matrix representation of T with respect to the basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$ (the standard basis). Give the explicit matrix with integer entries.
c) [5 marks] Give the matrix representing T^{3} with respect to the basis $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$. What is the matrix representing T^{3} with respect to the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$? Again, you should be able to give explicit matrices.
4 [10 marks]
a) [5 marks] Explain why $\operatorname{rank}(A)=\operatorname{rank}\left(A^{T}\right)$.
b) [5 marks] Assume A is diagonalizable. Show that A is similar to A^{T}.

5 [5 marks] Show that the functions $e^{x}, e^{2 x}$ and $x(x-1)$ are linearly independent.
6. [10 marks] Let A be a 3×3 diagonalizable matrix with $\operatorname{det}(A-\lambda I)=-(\lambda-2)(\lambda-3)(\lambda-4)$. What are the eigenvalues of $A-4 I$?

7 [10 marks] Let A be a nonzero $n \times n$ matrix satisfying $A^{k}=0$. Show that A is not diagonalizable. 8 [10 marks] Let A be an $n \times n$ matrix. Let V be the set of all matrices which are polynomials in A (of degree at most 3):

$$
V=\left\{a_{3} A^{3}+a_{2} A^{2}+a_{1} A+a_{0} I: a_{3}, a_{2}, a_{1}, a_{0} \in \mathbf{R}\right\}
$$

a) [4 marks] Show that V is a subspace of the vector space of all $n \times n$ matrices.
b) $[6$ marks $]$ Assume that $A^{2}=A+2 I$. Show that $\operatorname{dim}(V) \leq 2 . \operatorname{Can} \operatorname{dim}(V)=0$?

