Math 223 - Midterm 1 - Friday October 3, 2008 - six pages

1.[20 marks] Using Gaussian Elimination, give all the solutions to the following system of equations in vector parametric form

$$
\begin{aligned}
& 2 x_{1}+4 x_{2}+2 x_{3}+6 x_{4}-2 x_{5}=10 \\
& 4 x_{1}+8 x_{2}+7 x_{3}+15 x_{4}-10 x_{5}=26 \\
& 2 x_{1}+4 x_{2}-4 x_{3}
\end{aligned}+10 x_{5}=-2
$$

2.Given

$$
A=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 0 \\
-2 & 2 & 4
\end{array}\right]
$$

a)[10 marks] Determine the eigenvalues for A. Hint: 2 is an eigenvalue.
b)[15 marks] Determine an eigenvector for each eigenvalue. If there is a repeated eigenvalue (a repeated root), determine two eigenvectors which are not multiples of one another.
3.[10 marks] Assume A satisfies $A M=M D$ where

$$
A=\left[\begin{array}{cc}
24 & 10 \\
-30 & -11
\end{array}\right], M=\left[\begin{array}{cc}
1 & -2 \\
-2 & 3
\end{array}\right], D=\left[\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right] .
$$

If we set

$$
C=\left[\begin{array}{cc}
4^{3 / 2} & 0 \\
0 & 9^{3 / 2}
\end{array}\right]
$$

then $C^{2}=D^{3}$. Use this fact to find an explicit matrix B so that $B^{2}=A^{3}$ (I want the entries explicitly). Explain (displaying B is insufficient since checking this directly seems difficult).
4. [12 marks] For what values of the variable x does the matrix product $A B$ have an inverse when A and B are given as follows?

$$
A=\left[\begin{array}{ccc}
x & 17 & 15 \\
0 & 2 & 20 \\
0 & 0 & 1
\end{array}\right], \quad B=\left[\begin{array}{ccc}
0 & x & 1 \\
x & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

5. [5 marks] We have a function $f: \mathbf{R}^{2} \longrightarrow \mathbf{R}^{2}$ with

$$
f\binom{1}{0}=\binom{3}{2}, f\binom{1}{1}=\binom{2}{4}, f\binom{2}{1}=\binom{5}{8} .
$$

Can f be a linear transformation? If yes, what is the associated matrix. If no, give a reason.
6. [8 marks] Assume A, B are two 3×3 matrices with the property that there exist an invertible matrix M and two diagonal matrices D_{A}, D_{B} so that $A M=M D_{A}$ and $B M=M D_{B}$. Show that $A B=B A$.
7.[10 marks] Consider a system of 4 equations. Consider the following row operation that someone has proposed: For the system of equations, replace the old equation 1 with the sum of the old
equation 1 and -1 times the old equation 2 and simultaneously replacing the old equation 2 with the sum of the old equation 2 and -1 times the old equation 1 . Does this preserve the set of solutions to the system of equations?
8. [10 marks] Let A be a 4×4 matrix with an eigenvalue of 2 . Show that $A^{2}-3 A+2 I$ is not invertible.

