MATH 223: Row Space, Column Space and Rank of a matrix.

Let A be an $m \times n$ matrix. Each column is a vector in \mathbb{R}^m and each row, when interpreted as a column, is a vector in \mathbb{R}^n. Let A_i denote the ith column of A. We define the column space of A, denoted $\text{colsp}(A)$ as the span{A_1, A_2, \ldots, A_n}. Similarly we define the row space of A, denoted $\text{rowsp}(A)$ as the span of the rows of A, when interpreted as column vectors in \mathbb{R}^n.

We have already noted that for $x = (x_1, x_2, \ldots, x_n)^T$, we have $Ax = \sum_{i=1}^n x_i A_i \in \text{colsp}(A)$. A consequence is that $\text{colsp}(A) = \text{Im}(f)$ where we use $\text{Im}(f)$ to denote the image space (or range) of the linear transformation $f : \mathbb{R}^n \to \mathbb{R}^m$ given by $f(x) = Ax$.

We have previously noted the following

Proposition 1 Let A be an $m \times n$ matrix.
(a) If M is an $m \times m$ matrix then \(\{ x : Ax = 0 \} \subseteq \{ x : MAx = 0 \} \)
(b) If M is an invertible $m \times m$ matrix, then \(\{ x : Ax = 0 \} = \{ x : MAx = 0 \} \)

We proved (b) at the beginning of the course (in the context of \(\{ x : Ax = b \} \)) but you can specialize to $b = 0$. Results related to (a) were being used in the practice Midterm 1 in question 7.

We can also prove results for $\text{rowsp}(A)$ by simply using $\text{rowsp}(A) = \text{colsp}(A^T)$ but it makes sense to use the staircase pattern obtained by applying Gaussian elimination to A.

Proposition 2 Let A be an $m \times n$ matrix.
(a) If M is an $m \times m$ matrix then $\text{rowsp}(MA) \subseteq \text{rowsp}(A)$
(b) If M is an invertible $m \times m$ matrix, then $\text{rowsp}(MA) = \text{rowsp}(A)$

Consider the following example which we imagine was obtained by Gaussian elimination.

$$A = \begin{bmatrix} 2 & -2 & 0 & 2 & 1 & 0 & 0 \\ 4 & -4 & 0 & 4 & 3 & 2 & 2 \\ 2 & -1 & 3 & 4 & 1 & 1 & 2 \\ 2 & 0 & 6 & 6 & 2 & 4 & 8 \end{bmatrix}$$

With E invertible we obtain

$$EA = \begin{bmatrix} 2 & -2 & 0 & 2 & 1 & 0 & 0 \\ 0 & 1 & 3 & 2 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Any linear dependence among the columns such as $y_1A_1 + y_2A_2 + \cdots + y_n A_n = 0$ with $y = (y_1, y_2, \ldots, y_n)^T$ yields a solution to $Ay = 0$ and vice versa namely any $y = (y_1, y_2, \ldots, y_n)^T$ with $Ay = 0$ yields $y_1A_1 + y_2A_2 + \cdots + y_n A_n = 0$. Let I denote a subset of $\{1, 2, \ldots, n\}$, namely a subset of the column indices. Let A_i denote the ith column of A so that $(EA)_i$ denotes the ith column of EA. We deduce the following using Proposition 1.

Proposition 3 Let A, E be given with E being invertible. The set of columns $\{ A_i : i \in I \}$ is linearly dependent if and only if the set of columns $\{ (EA)_i : i \in I \}$ is linearly dependent.
Theorem 4 Let \(A, E \) be given with \(E \) being invertible. It then follows that the set of columns \(\{ A_i : i \in I \} \) is linearly independent if and only if the set of columns \(\{ (EA)_i : i \in I \} \) is linearly independent and hence the set of columns \(\{ A_i : i \in I \} \) forms a basis for \(\text{colsp}(A) \) if and only if the set of columns \(\{ (EA)_i : i \in I \} \) forms a basis for \(\text{colsp}(EA) \).

When we look at staircase patterns \(EA \), where \(E \) is invertible, it is easy to identify linearly independent columns of \(EA \) whose span is \(\text{colsp}(EA) \). Given that the sets of columns that are linearly dependent in \(A \) are precisely those that are linearly dependent in \(EA \), then it is also true that those that are linearly independent in \(A \) are precisely those that are linearly independent in \(EA \). Hence a set of columns of \(A \) yielding a column basis for \(\text{colsp}(A) \) will correspond to a set of columns of \(EA \) yielding a column basis for \(\text{colsp}(EA) \). Note that the idea is that the 1st, 2nd and 5th columns of \(EA \) yield a column basis for \(\text{colsp}(EA) \) if and only if the 1st, 2nd and 5th columns of \(A \) yield a column basis for \(\text{colsp}(A) \). It is straightforward to deduce that a basis for \(\text{colsp}(EA) \) are columns 1, 2 and 5:

\[
\begin{bmatrix}
2 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
-2 \\
1 \\
0
\end{bmatrix}
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}
\]

and so, by Corollary 4, a basis for \(\text{colsp}(A) \) is

\[
\begin{bmatrix}
2 \\
4 \\
2
\end{bmatrix}
\begin{bmatrix}
-2 \\
-4 \\
0
\end{bmatrix}
\begin{bmatrix}
1 \\
3 \\
2
\end{bmatrix}
\]

There are other choices for column bases but it is easiest to chose the columns of \(A \) whose corresponding columns in \(EA \) contain the pivots.

We can now use the (relatively) easy observation that the nonzero rows of \(EA \) form a basis for \(\text{rowsp}(EA) \). namely a basis for \(\text{rowsp}(EA) \) is \(\{(2, -2, 0, 2, 1, 0, 0)^T, (0, 1, 3, 2, 0, 2, 1)^T, (0, 0, 0, 0, 1, 3, 2)^T\} \). Combine this with Proposition 2 with \(E \) being invertible and we have that the nonzero rows of \(EA \) are also a basis for \(\text{rowsp}(A) \).

We have defined \(\text{rowsp}(A) = \text{span}\{(2, -2, 0, 2, 1, 0, 0)^T, (4, -4, 0, 4, 3, 2, 2)^T, (2, -1, 3, 4, 1, 1, 3)^T, (2, 0, 6, 6, 2, 4, 8)^T\} \). With \(E \) being invertible we have \(\text{rowsp}(A) = \text{rowsp}(EA) \) and so a basis for \(\text{rowsp}(A) \) is \(\{(2, -2, 0, 2, 1, 0, 0)^T, (0, 1, 3, 2, 0, 1, 3)^T, (0, 0, 0, 0, 1, 3, 2)^T\} \). Please note that \(E \) being invertible does not mean that the first 3 rows of \(A \) form a basis for \(\text{rowsp}(A) \), although it is possible.

Theorem 5 \(\text{dim}(\text{rowsp}(A)) = \text{dim}(\text{colsp}(A)) \),

Proof: We have \(\text{dim}(\text{rowsp}(A)) \) being equal to the number of non zero rows of \(EA \) and hence the number of pivots and we have \(\text{dim}(\text{colsp}(A)) \) being equal to the size of a basis for \(\text{colsp}(EA) \) which is the number of pivots.

Thus Theorem 5 allows us to define

\[
\text{rank}(A) = \text{dim}(\text{colsp}(A)) = \text{dim}(\text{rowsp}(A)).
\]

From this we obtain the following lovely result

Theorem 6 Let \(A \) be an \(m \times n \) matrix. Then \(\text{rank}(A) + \text{dim}(\text{nullsp}(A)) = n \).

Proof: \(\text{dim}(\text{nullsp}(A)) \) is the number of free variables. We have the number of pivot variables and the number of free variables is \(n \).