MATH 223. Orthogonal Vector Spaces.

Let \(U, V \) be vector spaces with \(U \subseteq V \). We consider

\[
U^\perp = \{ v \in \mathbb{R}^n : \text{for all } u \in U, \ < u, v >= 0 \}
\]

Theorem 0.1 \(U^\perp \) is a vector space.

Proof: We have that \(U^T \) is a vector space. Here we must verify that \(0 \in U^\perp \) since this will not follow from the two closure ideas. That is because \(< u, 0 >= 0 \) always. Also if \(x, y \in U^\perp \), then

\[
< x + y, u >= < x, u > + < y, u > \quad \text{and} \quad < cx, u >= c < x, u >
\]

by our inner product axioms. Thus if for all \(u \in U, \ < x, u >= 0 \) and \(< y, u >= 0 \), then we conclude that \(< x + y, u >= 0 \) + \(< y, u >= 0 \) and also \(< cx, u >= c < x, u >= 0 \). Thus we have \(x + y \) and \(cx \) in \(U^\perp \), verifying closure. So \(U^\perp \) is a vector space. \(\blacksquare \)

Consider a vector space \(U \subseteq \mathbb{R}^n \). Thus we are thinking of \(V = \mathbb{R}^n \) with the standard basis \(e_1, e_2, \ldots, e_n \). Let \(\{ u_1, u_2, \ldots, u_k \} \) be a basis for \(U \). Then if we write each \(u_i \) with respect to the standard basis we can form a matrix \(A = (a_{ij}) \) with the \(i \)th row \(A \) being \(u_i^T \). Thus row space(\(A \)) = \(U \) and \(\dim(U) = \text{rank}(A) \). Then

\[
\text{null space}(A) = \{ x : Ax = 0 \} = \{ x : < x, u_i >= 0 \text{ for } i = 1, 2, \ldots, k \}
\]

\[
= \{ x : < x, u >= 0 \text{ for all } u \in U \} = U^\perp
\]

Thus \(\dim(U) + \dim(U^T) = n \) using our result that \(\dim(\text{nullsp}(A)) + \text{rank}(A) = n \) where \(n \) is the number of columns in \(A \) These ideas will happily generalize to two vector spaces \(U, V \) with \(U \subseteq V \).

We do not need \(V = \mathbb{R}^n \) but we need an orthonormal basis for \(V \) in order to use the null space idea. If we apply Gram Schmidt or otherwise, we can obtain a basis \(\{ v_1, v_2, \ldots, v_n \} \) with the orthonormal properties:

\[
< v_i, v_j > = \begin{cases}
0 & \text{if } i \neq j \\
1 & \text{if } i = j
\end{cases} \quad (\star)
\]

Now proceed much as before writing

\[
u_i = \sum_{j=1}^{n} a_{ij} v_j
\]

since \(\{ v_1, v_2, \ldots, v_n \} \) is a basis for \(V \) and \(u_i \in V \). Let \(A \) be the associated \(k \times n \) matrix. Now consider any vector \(w \in V \) which we can write as \(w = \sum_{j=1}^{n} w_j v_j \). Let \(w \) denote the vector in the coordinates of the orthonormal basis so \(w = (w_1, w_2, \ldots, w_n)^T \). Then

\[
< u_i, w > = \sum_{j=1}^{n} a_{ij} v_j = \sum_{\ell=1}^{n} w_{\ell} v_{\ell} >
\]

\[
= \sum_{j=1}^{n} a_{ij} \left(< v_j, \sum_{\ell=1}^{n} w_{\ell} v_{\ell} > \right)
\]

\[
= \sum_{j=1}^{n} a_{ij} \left(\sum_{\ell=1}^{n} w_{\ell} (< v_j, v_{\ell} >) \right)
\]

\[
= \sum_{j=1}^{n} a_{ij} w_j
\]

using properties of (\(\star \)). Now \(\sum_{j=1}^{n} a_{ij} w_j \) is the \(i \)th entry of \(A w \). Thus we have a way of expressing \(U^\perp \) as above and we have the desired result

Theorem 0.2 Let \(U, V \) be vector spaces over \(\mathbb{R} \). Then \(\dim(U) + \dim(U^T) = \dim(V) \).