Big new concepts in MATH 223 include a vector space, linear independence (or linear dependence), and dimension.

Definition A set \(S = \{v_1, v_2, \ldots, v_k\} \) of \(k \) vectors is said to be linearly dependent if there are coefficients \(a_1, a_2, \ldots, a_k \) not all zero such that \(a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0 \).

Definition A set \(S = \{v_1, v_2, \ldots, v_k\} \) of \(k \) vectors is said to be linearly independent if when there are coefficients \(a_1, a_2, \ldots, a_k \) such that \(a_1v_1 + a_2v_2 + \cdots + a_kv_k = 0 \) then \(a_1 = a_2 = \cdots = a_k = 0 \).

Note that \(0 \) is a linearly dependent set, since \(1 \cdot 0 = 0 \).

These definitions are more symmetric than for example identifying \(S \) as linearly dependent of one vector in \(S \) is a linear combination of the others. Note however if \(v_i \) is a linear combination of the other vectors in \(S \), then \(\text{span}(S \setminus v_i) = \text{span}(S) \).

It makes some sense to choose a minimal subset \(S' \subseteq S \) with \(\text{span}(S') = \text{span}(S) \). Then \(S' \) must be linearly independent. You might note that the span of the empty set is naturally defined to be \(\{0\} \). Such boundary cases can be a bit awkward.

Definition For a vector space \(V \), a basis is a linearly independent set of vectors \(S \) so that \(\text{span}(S) = V \).

There would be two ways to find a basis. Either begin with a spanning set, and reduce if there are any dependencies. Alternatively build the basis from the ground up as a linearly independent set contained in \(V \).

Theorem Any basis for a vector space \(V \) has the same cardinality.

Proof: We let \(B_1 = \{u_1, u_2, \ldots, u_k\} \) and \(B_2 = \{v_1, v_2, \ldots, v_l\} \) be two bases for \(V \). Assume that \(l > k \). Now because \(B_1 \) is a basis, then any vector in \(V \) is a linear combination of vectors in \(B_1 \) and so we may write, without strange names for the coefficients, that

\[
v_j = \sum_{i=1}^{k} a_{ij} u_i
\]

Thus if we let \(A = (a_{ij}) \) be the matrix with these entries then the \(j \)th column of \(A \) corresponds to \(v_j \). Now because \(k < l \), then when we solve \(Ax = 0 \), we will have at most \(k \) pivot variables and hence at least \(l - k > 0 \) free variables and hence an \(x \neq 0 \) with \(Ax = 0 \).

We think of \(x \) as yielding a linear combination of the \(v_j \)'s yielding the zero vector, which would be a contradiction. Let \(x = (x_1, x_2, \ldots, x_l)^T \). Then

\[
\sum_{j=1}^{l} x_j v_j = \sum_{j=1}^{l} x_j \left(\sum_{i=1}^{k} a_{ij} u_i \right) = \sum_{i=1}^{k} \left(\sum_{j=1}^{l} a_{ij} \right) x_j = \sum_{i=1}^{k} 0 \cdot x_j = 0
\]

This has verified that \(B_2 \) is linearly dependent, a contradiction to \(B_2 \) being a basis and hence we conclude that \(k = l \).

Definition The dimension of a vector space \(V \) is the cardinality of any basis for \(V \).

The dimension of \(\mathbb{R}^t \) is \(t \) since we can identify a basis of \(\mathbb{R}^t \) as \(\{e_1, e_2, \ldots, e_t\} \) where \(e_i \) denote the vector with a 1 in the \(i \)th coordinate and 0’s elsewhere. Any vector space \(V \) contained in \(\mathbb{R}^t \),
has dimension at most t. (How should you show that the dimension is at most t? Assume you have $t + 1$ linear independent vectors in U and derive a contradiction). Thus dimension is being used as a piece of mathematical terminology for vector spaces in the context of bases and does not refer some English meaning of dimension. Maybe we would have been better to have a separate term but this is not standard.