Theorem 1 Let A be an $n \times n$ matrix. The following are equivalent.
i) A^{-1} exists (we say A is invertible or nonsingular).
ii) $A \mathbf{x}=\mathbf{0}$ has only one solution, namely $\mathbf{x}=\mathbf{0}$.
iii) A can be transformed to a triangular matrix, with nonzeros on the main diagonal, by elementary row operations.
iv) A can be transformed to I by elementary row operations.

Proof: We can verify by Gaussian elimination that iii$) \Rightarrow \mathrm{iv}) \Rightarrow \mathrm{i}) \Rightarrow \mathrm{ii}) \Rightarrow$ iii), the last implication following because there can be no free variables (the system $A \mathbf{x}=\mathbf{0}$ is always consistent) and so elementary row operations must result in every variable being a pivot variable.

Finding A^{-1}

$$
\text { Let } A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

To solve for A^{-1} we can solve

$$
A \mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \quad A \mathbf{x}_{2}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \quad A \mathbf{x}_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

and it makes sense to solve for all three vectors $\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}$ at the same time:

$$
\begin{aligned}
& {\left[\right)} \\
& E_{1}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \quad\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 1 & -1 & -1 & 0 & 1
\end{array}\right] \\
& E_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \quad\left[\begin{array}{cccccc}
1 & 0 & 2 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 \\
0 & 0 & -2 & -1 & -1 & 1
\end{array}\right] \\
& E_{3}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1 / 2
\end{array}\right] \quad\left[\begin{array}{cccccc}
1 & E_{3} E_{2} E_{1} A & E_{3} E_{2} E_{1} \\
0 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 / 2 & 1 / 2 & -1 / 2
\end{array}\right] \\
& \left.E_{4}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right], E_{5}=\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \begin{array}{cccccc}
E_{5} E_{4} E_{3} E_{2} E_{1} A & E_{5} E_{4} E_{3} E_{2} E_{1} \\
{\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & -1 / 2 & 1 / 2 \\
0 & 0 & 1 & 1 / 2 & 1 / 2
\end{array}\right]-1 / 2}
\end{array}\right]
\end{aligned}
$$

Thus we have $\left(E_{5} E_{4} E_{3} E_{2} E_{1}\right) A=I$ and so $A^{-1}=E_{5} E_{4} E_{3} E_{2} E_{1}$ and $A=E_{1}^{-1} E_{2}^{-1} E_{3}^{-1} E_{4}^{-1} E_{5}^{-1}$.

By the way, always check your work:

$$
A^{-1} A=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I
$$

