MATH 223: Extending a set of vectors to a basis.

Let us consider the vector space \mathbf{R}^m for convenience. Imagine you are given k linearly independent vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$ in \mathbf{R}^n . We would like to find m - k vectors $\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_{m-k}\}$ so that

$$\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k, \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{m-k}\}$$
 is a basis for \mathbf{R}^n

There many ways to approach this. One way is to use Gaussiane elemination techniques. Form an $m \times (m + k)$ matrix $A = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_k \mathbf{e}_1 \mathbf{e}_2 \dots \mathbf{e}_m]$ where $\mathbf{e}_1 \mathbf{e}_2 \dots \mathbf{e}_m$ is the standard basis for \mathbf{R}^m . Then $colsp(A) = \mathbf{R}^m$ and so a basis of the column space as reported by Gaussian elimination will be a basis of \mathbf{R}^m . Now you can check that Gaussian elimination must have the first k columns as pivots (else there would be a dependency among $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$) and then we have a basis of \mathbf{R}^m that contains $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

An alternate solution is to form a matrix $B = [\mathbf{v}_1 \mathbf{v}_2 \dots \mathbf{v}_k]$ and apply Gaussian elimination (by multiplying *B* by an invertible *E*) which yields a matrix *EB* which has m - k rows of 0's. Now append to *EB* the m - k columns $\mathbf{e}_{k+1}, \mathbf{e}_{k+2}, \dots, \mathbf{e}_m$ so that the resulting $m \times m$ matrix *C* has rank *m*. Now form $E^{-1}C$ which will also have rank *m* and the columns of $E^{-1}C$ will be a basis for \mathbf{R}^m and will be a basis including $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

If we are given an arbitrary *m*-dimensional vector space V over field \mathbf{R} , we can choose a basis for V and then coordinatize vectors so that we can manipulate them as vectors in \mathbf{R}^m .