Let us consider the vector space \mathbf{R}^{m} for convenience. Imagine you are given k linearly independent vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ in \mathbf{R}^{n}. We would like to find $m-k$ vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m-k}\right\}$ so that

$$
\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}, \mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m-k}\right\} \text { is a basis for } \mathbf{R}^{n}
$$

There many ways to approach this. One way is to use Gaussiane eleimination techniques. Form an $m \times(m+k)$ matrix $A=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{k} \mathbf{e}_{1} \mathbf{e}_{2} \ldots \mathbf{e}_{m}\right]$ where $\mathbf{e}_{1} \mathbf{e}_{2} \ldots \mathbf{e}_{m}$ is the standard basis for \mathbf{R}^{m}. Then $\operatorname{colsp}(A)=\mathbf{R}^{m}$ and so a basis of the column space as reported by Gaussian elimination will be a basis of \mathbf{R}^{m}. Now you can check that Gaussian elimination must have the first k columns as pivots (else there would be a dependency among $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$) and then we have a basis of \mathbf{R}^{m} that contains $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.

An alternate solution is to form a matrix $B=\left[\mathbf{v}_{1} \mathbf{v}_{2} \ldots \mathbf{v}_{k}\right]$ and apply Gaussian elimination (by multiplying B by an invertible E) which yields a matrx $E B$ which has $m-k$ rows of 0 's. Now append to $E B$ the $m-k$ columns $\mathbf{e}_{k+1}, \mathbf{e}_{k+2}, \ldots, \mathbf{e}_{m}$ so that the resulting $m \times m$ matrix C has rank m. Now form $E^{-1} C$ which will also have rank m and the columns of $E^{-1} C$ will be a basis for \mathbf{R}^{m} and will be a basis including $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.

If we are given an arbitrary m-dimensional vector space V over field \mathbf{R}, we can choose a basis for V and then coordinatize vectors so that we can manipulate them as vectors in \mathbf{R}^{m}.

