MATH 223: Eigenvalues and Eigenvectors (and Birds).

Richard Anstee

The following idea is important in a variety of contexts in this course. For a matrix A, assume we have two eigenvectors $\mathbf{v}_1, \mathbf{v}_2$ of eigenvalues λ_1, λ_2 . Form the matrix

$$M = [\mathbf{v}_1 \, \mathbf{v}_2].$$

We have the matrix equation

$$AM = MD$$

where

$$D = \left[\begin{array}{cc} \lambda_1 & 0\\ 0 & \lambda_2 \end{array} \right].$$

Now make the assumption that M is invertible. This is a non trivial assumption. For us, it is true as long as $\mathbf{v}_1 \neq k\mathbf{v}_2$ for any k.

We can verify this to be true if $\lambda_1 \neq \lambda_2$. Assume $\mathbf{v}_1 = k\mathbf{v}_2$ and get a contradiction:

$$A\mathbf{v}_1 = A(k\mathbf{v}_2) = kA(\mathbf{v}_2) = k\lambda_2\mathbf{v}_2 = \lambda_2\mathbf{v}_1,$$
$$A\mathbf{v}_1 = \lambda_1\mathbf{v}_1.$$

We conclude that $\lambda_2 \mathbf{v}_1 = \lambda_1 \mathbf{v}_1$, i.e. $(\lambda_1 - \lambda_2) \mathbf{v}_1 = \mathbf{0}$ and so, with $\mathbf{v}_1 \neq \mathbf{0}$, $\lambda_1 - \lambda_2 = 0$ and so $\lambda_1 = \lambda_2$ which is a contradiction. Thus $\mathbf{v}_1 \neq k \mathbf{v}_2$ for any k.

Now

$$AM = MD$$
 means $M^{-1}AM = D$ and $A = MDM^{-1}$

In our case with the Leslie Matrix and birds

$$A = \begin{bmatrix} .7 & .3\\ 2 & 0 \end{bmatrix}, \qquad M = \begin{bmatrix} 3 & 1\\ 5 & -4 \end{bmatrix}, \qquad M^{-1} = \begin{bmatrix} \frac{4}{17} & \frac{1}{17}\\ \frac{5}{17} & \frac{-3}{17} \end{bmatrix}, \qquad D = \begin{bmatrix} \frac{6}{5} & 0\\ 0 & \frac{-1}{2} \end{bmatrix}$$

Now we have $A = MDM^{-1}$ and so

$$\begin{split} A^2 &= MDM^{-1}MDM^{-1} = MD(M^{-1}M)DM^{-1} = MD^2M^{-1},\\ A^3 &= MDM^{-1}MDM^{-1}MDM^{-1} = MD(M^{-1}M)D(M^{-1}M)DM^{-1} = MD^3M^{-1},\\ A^n &= MD^nM^{-1}. \end{split}$$

It is straightforward to compute

$$D^n = \begin{bmatrix} \left(\frac{6}{5}\right)^n & 0\\ 0 & \left(\frac{-1}{2}\right)^n \end{bmatrix},$$

hence

$$\begin{split} A^{n} &= \begin{bmatrix} .7 & .3\\ 2 & 0 \end{bmatrix}^{n} = \begin{bmatrix} 3 & 1\\ 5 & -4 \end{bmatrix} \begin{bmatrix} (\frac{6}{5})^{n} & 0\\ 0 & (\frac{-1}{2})^{n} \end{bmatrix} \begin{bmatrix} \frac{4}{17} & \frac{1}{17}\\ \frac{5}{17} & \frac{-3}{17} \end{bmatrix} \\ &= \begin{bmatrix} \frac{12}{17}(1.2)^{n} + \frac{5}{17}(-.5)^{n} & \frac{3}{17}(1.2)^{n} - \frac{3}{17}(-.5)^{n}\\ \frac{20}{17}(1.2)^{n} - \frac{20}{17}(-.5)^{n} & \frac{5}{17}(1.2)^{n} + \frac{12}{17}(-.5)^{n} \end{bmatrix}. \\ A \begin{bmatrix} 1\\ 0 \end{bmatrix} &= \begin{bmatrix} \frac{12}{17}(1.2)^{n} + \frac{5}{17}(-.5)^{n}\\ \frac{20}{17}(1.2)^{n} - \frac{20}{17}(-.5)^{n}\\ \frac{20}{17}(-.5)^{n} \end{bmatrix} \approx \begin{bmatrix} \frac{12}{17}(1.2)^{n}\\ \frac{20}{17}(1.2)^{n} \end{bmatrix}, \end{split}$$

Thus

where we are using the fact that
$$\lim_{n\to\infty} (-.5)^n = 0$$
. One aspect of the result is that the population
is growing 20% a year and also the ratio of adults to juveniles is approximately 3 : 5 in a stable
population. A ratio sufficiently far from 3 : 5 would alert the biologist to the likelihood of the
population having undergone some environmental disturbance in the recent past.

There are many important applications of eigenvectors/eigenvalues including computing powers of a matrix. We intend to compute the nth fibonacci number this way.