MATH 223: Quick primer on Determinants.
We have a determinant function det : $\mathbf{R}^{n \times n} \rightarrow \mathbf{R}$ that satisfies various natural properties.

- $\operatorname{det} I=1$
- If B is obtained by multiplying row i of A by t then $\operatorname{det}(B)=t \cdot \operatorname{det}(A)$
- If B is obtained from A by interchanging row i and row j then $\operatorname{det}(B)=-\operatorname{det}(A)$
- If B is obtained from A by adding a multiple of row i to row j then $\operatorname{det}(B)=\operatorname{det}(A)$
- $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
- $\operatorname{det}(A) \neq 0$ if and only if A has an inverse if and only if there exists an $\mathbf{x} \neq \mathbf{0}$ with $A \mathbf{x}=\mathbf{0}$.
- $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
- $\operatorname{det}(A)$ measures some volume: $|\operatorname{det}(A)|$ is the volume of the parallelepiped formed by the column vectors of A

The idea is to give a specific function and then verify that it has the desired properties (will take several lectures). For convenience, use the notation $M_{i j}$ to denote the matrix obtained from A by deleting row i and column j. We define

$$
\begin{equation*}
\operatorname{det}(A)=(-1)^{1+1} a_{11} \operatorname{det}\left(M_{11}\right)+(-1)^{1+2} a_{12} \operatorname{det}\left(M_{12}\right)+\cdots+(-1)^{1+n} a_{1 n} \operatorname{det}\left(M_{1 n}\right) \tag{1}
\end{equation*}
$$

This is called expansion about the first row. One of our goals is to show that the following formulas are equivalent the first being expansion about row i :

$$
\begin{equation*}
\operatorname{det}(A)=(-1)^{i+1} a_{i 1} \operatorname{det}\left(M_{i 1}\right)+(-1)^{i+2} a_{i 2} \operatorname{det}\left(M_{i 2}\right)+\cdots+(-1)^{i+n} a_{i n} \operatorname{det}\left(M_{i n}\right) \tag{2}
\end{equation*}
$$

and the second being expansion about the j th column:

$$
\begin{equation*}
\operatorname{det}(A)=(-1)^{1+j} a_{1 j} \operatorname{det}\left(M_{2 j}\right)+(-1)^{2+j} a_{2 j} \operatorname{det}\left(M_{2 j}\right)+\cdots+(-1)^{n+j} a_{n j} \operatorname{det}\left(M_{n j}\right) \tag{3}
\end{equation*}
$$

You might check that this formula works well for 2×2 matrices and is the same as our previously given formula.

Computations:

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right] \quad M_{11}=\left[\begin{array}{lll}
\cdot & \cdot & \dot{6} \\
\cdot & 5 & 6 \\
\cdot & 8 & 9
\end{array}\right] \quad M_{12}=\left[\begin{array}{lll}
\cdot & \cdot & \cdot \\
4 & \cdot & 6 \\
7 & \cdot & 9
\end{array}\right] \quad M_{13}=\left[\begin{array}{lll}
\cdot & \cdot & \cdot \\
4 & 5 & \cdot \\
7 & 8 & \cdot
\end{array}\right] \\
\operatorname{det}(A)=(-1)^{1+1} a_{11} \operatorname{det}\left(M_{11}\right)+(-1)^{1+2} a_{12} \operatorname{det}\left(M_{12}\right)+(-1)^{1+3} a_{13} \operatorname{det}\left(M_{13}\right) \\
=\operatorname{det}\left(\left[\begin{array}{cc}
5 & 6 \\
8 & 9
\end{array}\right]\right)-2 \operatorname{det}\left(\left[\begin{array}{cc}
4 & 6 \\
7 & 9
\end{array}\right]\right)+3 \operatorname{det}\left(\left[\begin{array}{ll}
4 & 5 \\
7 & 8
\end{array}\right]\right)= \\
=(1 \times-3)+(-2 \times-6)+(3 \times-3)=0
\end{gathered}
$$

Or perhaps you prefer expansion about second column

$$
\begin{gathered}
M_{12}=\left[\begin{array}{ccc}
\cdot & \cdot & \cdot \\
4 & \cdot & 6 \\
7 & \cdot & 9
\end{array}\right] \quad M_{22}=\left[\begin{array}{ccc}
1 & \cdot & 3 \\
\cdot & \cdot & \cdot \\
7 & \cdot & 9
\end{array}\right] \quad M_{32}=\left[\begin{array}{lll}
1 & \cdot & 3 \\
4 & \cdot & 6 \\
\cdot & \cdot & \cdot
\end{array}\right] \\
\operatorname{det}(A)=(-1)^{1+2} a_{12} \operatorname{det}\left(M_{12}\right)+(-1)^{2+2} a_{22} \operatorname{det}\left(M_{22}\right)+(-1)^{3+2} a_{32} \operatorname{det}\left(M_{32}\right)
\end{gathered}
$$

$$
\begin{gathered}
=(-2) \operatorname{det}\left(\left[\begin{array}{ll}
4 & 6 \\
7 & 9
\end{array}\right]\right)+5 \operatorname{det}\left(\left[\begin{array}{ll}
1 & 3 \\
7 & 9
\end{array}\right]\right)+(-8) \operatorname{det}\left(\left[\begin{array}{ll}
1 & 3 \\
4 & 6
\end{array}\right]\right)= \\
=(-2 \times-6)+(5 \times-12)+(-8 \times-6)=0
\end{gathered}
$$

All that work for nothing? ! You could practice using expansion about second row and (hopefully) obtain the same result.

You should practice an example $\operatorname{det}(A-\lambda I)$ to look for eigenvalues/eigenvectors. We later discover that Gaussian Elimination can help us compute determinants, but this does not work well with variables such as λ for which inadvertent division by zero might occur.

Here is an example of a surprising formula for the inverse using determinants. For a matrix A, we say the i, j cofactor is $(-1)^{i+j} \operatorname{det}\left(M_{i j}\right)$.

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right], \quad A^{-1}=\left[\begin{array}{ccc}
0 & -1 & 1 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2
\end{array}\right]
$$

A formula for the inverse involves determining the transpose of the matrix of cofactors

$$
\begin{aligned}
A^{*} & =\left[\begin{array}{ccc}
(-1)^{1+1} \operatorname{det}\left(M_{11}\right) & (-1)^{2+1} \operatorname{det}\left(M_{21}\right) & (-1)^{3+1} \operatorname{det}\left(M_{31}\right) \\
(-1)^{1+2} \operatorname{det}\left(M_{12}\right) & (-1)^{2+2} \operatorname{det}\left(M_{22}\right) & (-1)^{3+2} \operatorname{det}\left(M_{32}\right) \\
(-1)^{1+3} \operatorname{det}\left(M_{13}\right) & (-1)^{2+3} \operatorname{det}\left(M_{23}\right) & (-1)^{3+3} \operatorname{det}\left(M_{33}\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\operatorname{det}\left(\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right) & -\operatorname{det}\left(\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]\right) & \operatorname{det}\left(\left[\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right]\right) \\
-\operatorname{det}\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\right) & \operatorname{det}\left(\left[\begin{array}{cc}
1 & 2 \\
1 & 1
\end{array}\right]\right) & -\operatorname{det}\left(\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\right) \\
\operatorname{det}\left(\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\right) & -\operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\right) & \operatorname{det}\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0 & 2 & -2 \\
1 & -1 & -1 \\
-1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

Now divide by $\operatorname{det}(A)=-2$ to get the inverse! I would point out that the diagonal entries of $A A^{*}$ are all $\operatorname{det}(A)$ but a little more work is needed to see the off diagonals to be 0 . This is not an efficient formula but useful in understanding the inverse. This part of Cramer's Rule.

