If we have a set of vectors $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ where we set $U=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$, it is natural to express any vector $u \in U$ as a linear combination of the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$, namely

$$
\mathbf{u}=c_{1} \mathbf{u}_{2}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}
$$

where we think of $c_{1}, c_{2}, \ldots, c_{k}$ as the coordinates of \mathbf{u} with respect to the spanning set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$. Now if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is linearly independent, then the coordinates behave as we would hope, namely they are unique.
Theorem 1 If the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is linearly independent, then for each vector $\mathbf{u} \in U=$ $\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$, there are unique numbers $c_{1}, c_{2}, \ldots, c_{k}$ (the coordinates) such that $\mathbf{u}=c_{1} \mathbf{u}_{2}+$ $c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k}$.
Proof: The existence of numbers $c_{1}, c_{2}, \ldots, c_{k}$ follows from the fact that $\mathbf{u} \in U=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$. Assume

$$
\begin{aligned}
\mathbf{u} & =c_{1} \mathbf{u}_{2}+c_{2} \mathbf{u}_{2}+\cdots+c_{k} \mathbf{u}_{k} \\
\mathbf{u} & =d_{1} \mathbf{u}_{2}+d_{2} \mathbf{u}_{2}+\cdots+d_{k} \mathbf{u}_{k}
\end{aligned}
$$

Then by subtracting the two equations we obtain

$$
\mathbf{0}=\left(c_{1}-d_{1}\right) \mathbf{u}_{2}+\left(c_{2}-d_{2}\right) \mathbf{u}_{2}+\cdots+\left(c_{k}-d_{k}\right) \mathbf{u}_{k}
$$

Since the set $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}\right\}$ is linearly independent, then we deduce that $c_{1}-d_{1}=0, c_{2}-d_{2}=0$, $\ldots, c_{k}-d_{k}=0$ and hence $c_{1}=d_{1}, c_{2}=d_{2}, \ldots, c_{k}=d_{k}$.

Thus if we have a k-dimensional vector space than we can coordinatize the vectors as elements of \mathbf{R}^{k}. Consider the following 4 vectors.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right], \quad \mathbf{v}_{4}=\left[\begin{array}{l}
3 \\
7 \\
4
\end{array}\right]
$$

We can verify that $U=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3} . \mathbf{v}_{4}\right\}=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ noting that $\mathbf{v}_{3}=-7 \mathbf{v}_{1}+4 \mathbf{v}_{2}$ and $\mathbf{v}_{4}=-5 \mathbf{v}_{1}+4 \mathbf{v}_{2}$. Indeed $\operatorname{dim}(U)=2$. While $U \subseteq \mathbf{R}^{3}$ it is natural to consider U as a 2-dimensional vector space and in fact we can write our vectors in blue coordinates with respect to the basis $\mathbf{v}_{1}, \mathbf{v}_{2}$ of U.

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \text { is }\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
2 \\
3 \\
1
\end{array}\right] \text { is }\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad\left[\begin{array}{l}
1 \\
5 \\
4
\end{array}\right] \text { is }\left[\begin{array}{c}
-7 \\
4
\end{array}\right], \quad\left[\begin{array}{l}
3 \\
7 \\
4
\end{array}\right] \text { is }\left[\begin{array}{c}
-5 \\
4
\end{array}\right] .
$$

A somewhat different example is from the assignment. Let $W=\operatorname{span}\left\{\cos ^{2}(x), \sin ^{2}(x)\right\}$. We deduce that $\left\{\cos ^{2}(x), \sin ^{2}(x)\right\}$ is a basis for W so we can coordinatize with respect to this basis.

$$
\cos ^{2}(x) \text { is }\left[\begin{array}{l}
1 \\
0
\end{array}\right], \quad \sin ^{2}(x) \text { is }\left[\begin{array}{l}
0 \\
1
\end{array}\right], \quad 2 \text { is }\left[\begin{array}{l}
2 \\
2
\end{array}\right], \quad \cos (2 x) \text { is }\left[\begin{array}{c}
1 \\
-1
\end{array}\right] .
$$

As a vector space over \mathbf{R} we can think of W as \mathbf{R}^{2}. Of course as functions, there are more properties. We can't differentiate a vector but we can differentiate $\cos ^{2}(x)$.

A student in MATH 223 in 2015 said that U and W were thinly veiled examples of \mathbf{R}^{2}. And of course similarly we think of a vector space X, with $\operatorname{dim}(X)=k$ and \mathbf{R} as the scalar field, as a thinly veiled example of \mathbf{R}^{k}. To make this precise consider the following definition.

Definition 2 Given two vector spaces U, V over the same field F, we say that U and V are isomorphic if there is a bijective map $h: U \rightarrow V$ with $h(\mathbf{0})=\mathbf{0}$ (the first $\mathbf{0}$ is in U and the second $\mathbf{0}$ is in V) and with the property that for any $\mathbf{x}, \mathbf{y} \in U$, we have $h(\mathbf{x}+\mathbf{y})=h(\mathbf{x})+h(\mathbf{y})$ and for any $c \in F, h(c \mathbf{x})=c \cdot h(\mathbf{x})$.

Remember that the isomorphism need not preserve other properties of the elements of U and V that are not associated with being a vector space.

Theorem 3 If U and V are vector spaces over the same field and $\operatorname{dim}(U)=\operatorname{dim}(V)$ then U and V are isomorphic.

Proof: Let $k=\operatorname{dim}(U)=\operatorname{dim}(V)$. Assume $k>0$. Let U have basis $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{k}$ and V has basis $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}$. Then define $h\left(\mathbf{u}_{i}\right)=\mathbf{v}_{i}$ and extend to all vectors of U by linearity; namely for $\mathbf{u}=\sum_{i=1}^{k} a_{i} \mathbf{u}_{i}$ and so define $h(\mathbf{u})=\sum_{i=1}^{k} a_{i} \mathbf{v}_{i}$. We easily show that h is a bijection and $h^{-1}\left(\mathbf{v}_{i}\right)=\mathbf{u}_{i}$.

When $0=\operatorname{dim}(U)=\operatorname{dim}(V)$, then each consists of just the zero vector and so the isomorphism is easy.

The following is an important application of dimension.
Theorem 4 An $m \times m$ matrix A is diagonalizable if and only if there is a basis of \mathbf{R}^{m} consisting of eigenvectors of A.

Proof: If A is diagonalizable then there is a diagonal matrix D and an invertible matrix M with $A M=M D$. But then each column of M is an eigenvector of A (no column of M can be $\mathbf{0}$ since M is invertible. And since M is invertible, the only solution to $M \mathbf{x}=\mathbf{0}$ is $\mathbf{x}=\mathbf{0}$. Thus the m columns of M are linearly independent. But we note the columns of M are contained in \mathbf{R}^{m}. Thus the dimension of the column space of M is m and so the column space of M is equal to \mathbf{R}^{m}.

If there is a basis of \mathbf{R}^{m} say $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{m}\right.$ then if we form the matrix M whose columns are the \mathbf{v}_{i} 's then M is invertible. If $A \mathbf{v}_{i}=\lambda_{i} \mathbf{v}_{i}$, then we have $A M=M D$ where the i th diagonal entry is λ_{i}.

We will add some more detail to this theorem as course progresses

