Some examples. Imagine we have a 3 -dimensional vector space $V=\operatorname{span}\left\{f_{1}(x), f_{2}(x), f_{3}(x)\right\}$ where $f_{1}(x)=e^{x}, f_{2}(x)=e^{2 x}$ and $f_{3}(x)=e^{3 x}$. Demonstrating that these three are linearly independent is relatively easy (you could even examine the differing growth rates of the functions to prove linear independence). We can think of $\left\{f_{i}(x), f_{2}(x), f_{3}(x)\right\}$ as a basis F for V. We consider the linear transformation $T: V \rightarrow V$ defined as

$$
T(h(x))=h(x)+\frac{d}{d x} h(x) .
$$

We can represent T by a matrix when considering vectors in V written with respect to F.

$$
T{ }^{\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]_{\text {with respect to } F} F}
$$

We can consider other coordinate systems for V. Let $g_{1}(x)=e^{x}+e^{2 x}, g_{2}(x)=e^{2 x}+e^{3 x}$ and $g_{3}(x)=e^{x}+e^{3 x}$. We have the following

$$
M=\begin{gathered}
\\
f_{1} \\
f_{2} \\
f_{3}
\end{gathered} \begin{array}{ccc}
g_{1} & g_{2} & g_{3} \\
{\left[\begin{array}{ccc}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]} \\
F & \leftarrow G
\end{array}
$$

We can compute

$$
\left.M^{-1}=\begin{array}{c}
g_{1} \\
g_{2} \\
g_{3}
\end{array} \quad f_{2} f_{3}, \begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2
\end{array}\right]
$$

The existence of M^{-1} means that $f_{1}, f_{2}, f_{3} \in \operatorname{span}\left\{g_{1}(x), g_{2}(x), g_{3}(x)\right\}$ and easily we see $\operatorname{span}\left\{g_{1}(x), g_{2}(x), g_{3}(x)\right\} \subseteq V$ from which we deduce that $\operatorname{span}\left\{g_{1}(x), g_{2}(x), g_{3}(x)\right\}=V$ and so $\left\{g_{1}(x), g_{2}(x), g_{3}(x)\right\}$ forms a basis for V. What is T written as a matrix with respect to G ?

$$
\begin{array}{ccc}
{\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & -1 / 2 \\
-1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & 1 / 2
\end{array}\right]} \\
G \leftarrow F & T \text { with respect to } F & F \leftarrow G
\end{array} \underset{\left.\begin{array}{ccc}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]}{\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]}=\underset{T \text { with respect to } G}{\left[\begin{array}{ccc}
5 / 2 & -1 / 2 & -1 \\
1 / 2 & 7 / 2 & 1 \\
-1 / 2 & 1 / 2 & 3
\end{array}\right]}
$$

You can check

$$
T\left(g_{1}+g_{2}\right)=T\left(\left[\begin{array}{l}
1 \tag{1}\\
1 \\
0
\end{array}\right]_{G}\right)=\underset{T \text { with respect to } G}{\left[\begin{array}{ccc}
5 / 2 & -1 / 2 & -1 \\
1 / 2 & 7 / 2 & 1 \\
-1 / 2 & 1 / 2 & 3
\end{array}\right]}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]_{G}=\left[\begin{array}{l}
2 \\
4 \\
0
\end{array}\right]_{G}
$$

We note that $g_{1}(x)+g_{2}(x)=e^{x}+2 e^{2 x}+e^{3 x}=f_{1}(x)+2 f_{2}(x)+f_{3}(x)$ so that

$$
\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]_{G}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]_{F}
$$

We $T\left(f_{1}(x)+2 f_{2}(x)+f_{3}(x)\right)$ is computed as

$$
T \underset{\text { with respect to } F}{\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 4
\end{array}\right]_{F}}\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right]_{F}=\left[\begin{array}{l}
2 \\
6 \\
4
\end{array}\right]_{F}=2 f_{1}(x)+6 f_{2}(x)+4 f_{3}(x) .
$$

We compute $2 f_{1}(x)+6 f_{2}(x)+4 f_{3}(x)=2 e^{x}+6 e^{2 x}+4 e^{3 x}=2\left(e^{x}+e^{2 x}\right)+4\left(e^{2 x}+e^{3 x}\right)=2 g_{1}(x)+4 g_{2}(x)$. This is (1) above.

