MATH 223: Birds and Eigenvalues and Eigenvectors.
An application to bird populations (Leslie Matrix).

Sample computation
Let

$$
A=\left[\begin{array}{ll}
.7 & .3 \\
2 & 0
\end{array}\right]
$$

An application associated with this matrix is a simple model of a growing bird population. Let

$$
\begin{gathered}
x_{n}=\text { no. of adults in year } n, \\
y_{n}=\text { no. of juveniles in year } n .
\end{gathered}
$$

We have a matrix equation to represent changes from year to year. We have 30% of the juveniles survive to become adults, 70% of the adults survive a year, and each adult has 2 offspring (juveniles). We have this information summarized in a matrix equation:

$$
\left[\begin{array}{c}
x_{n+1} \\
y_{n+1}
\end{array}\right]=\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]
$$

We deduce, by induction, that

$$
\left[\begin{array}{l}
x_{n} \\
y_{n}
\end{array}\right]=A^{n}\left[\begin{array}{l}
x_{0} \\
y_{0}
\end{array}\right]
$$

This is a sample of many applications where we wish to know what happens to A^{n} as $n \longrightarrow \infty$.
Recall our computation of eigenvalues/eigenvectors for this matrix:
First we define an eigenvector \mathbf{x} of eigenvalue λ to be satisfy $A \mathbf{x}=\lambda \mathbf{x}$ and $\mathbf{x} \neq \mathbf{0}$. This is equivalent to $(A-\lambda I) \mathbf{x}=\mathbf{0}$ and $\mathbf{x} \neq \mathbf{0}$. This can only occur by our previous observations when $\operatorname{det}(A-\lambda I)=0$ and moreover when $\operatorname{det}(A-\lambda I)=0$ we can find an $\mathbf{x} \neq \mathbf{0}$ with $A \mathbf{x}=\lambda \mathbf{x}$.

$$
\begin{aligned}
\operatorname{det}(A & -\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
.7-\lambda & .3 \\
2 & -\lambda
\end{array}\right]\right) \\
& =(.7-\lambda)(-\lambda)-.3 \times 2 \\
& =\frac{1}{10}\left(10 \lambda^{2}-7 \lambda-6\right) \\
& =\frac{1}{10}(5 \lambda-6)(2 \lambda+1)
\end{aligned}
$$

Thus we have two eigenvalues $\lambda=\frac{6}{5}, \frac{-1}{2}$.
For $\lambda=\frac{6}{5}$, we solve $\left(A-\frac{6}{5} I\right) \mathbf{v}=\mathbf{0}$ for $\mathbf{v} \neq \mathbf{0}$:

$$
\left(A-\frac{6}{5} I\right) \mathbf{v}=\left[\begin{array}{cc}
-.5 & .3 \\
2 & -1.2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The vector $\mathbf{v}=\left[\begin{array}{l}3 \\ 5\end{array}\right]$ works as an eigenvalue of A of eigenvalue $\frac{6}{5}$. We check

$$
\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
5
\end{array}\right]=\left[\begin{array}{c}
3.6 \\
6
\end{array}\right]=\frac{6}{5}\left[\begin{array}{l}
3 \\
5
\end{array}\right]
$$

For $\lambda=\frac{-1}{2}$, we solve $\left(A-\frac{-1}{2} I\right) \mathbf{v}=\mathbf{0}$ for $\mathbf{v} \neq \mathbf{0}$:

$$
\left(A-\frac{-1}{2} I\right) \mathbf{v}=\left[\begin{array}{cc}
1.2 & .3 \\
2 & .5
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

The vector $\mathbf{v}=\left[\begin{array}{c}1 \\ -4\end{array}\right]$ works as an eigenvalue of A of eigenvalue $\frac{-1}{2}$. We check

$$
\left[\begin{array}{cc}
.7 & .3 \\
2 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
-4
\end{array}\right]=\left[\begin{array}{c}
-.5 \\
2
\end{array}\right]=\frac{-1}{2}\left[\begin{array}{c}
1 \\
-4
\end{array}\right]
$$

Note that we will always succeed in finding an eigenvector (a non zero vector) assuming our eigenvalue λ has $\operatorname{det}(A-\lambda I)=0$. Thue if you are doing such a computation and find that you are unable to find a non zero vector \mathbf{x} with $(A-\lambda I) \mathbf{x}=\mathbf{0}$, then either you made an error determining the eigenvalues or you made an error solving for the non zero vector \mathbf{x} from the equations $(A-\lambda I) \mathbf{x}=\mathbf{0}$. I have seen both errors from students.

There is one example which needs to be given, namely the case of a 0 eigenvalue.

$$
A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right]
$$

We compute $\operatorname{det}(A-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}1-\lambda & 2 \\ 2 & 4-\lambda\end{array}\right]\right)=\lambda^{2}-5 \lambda$. One of the roots is $\lambda=0$.
For $\lambda=0$, we solve for $(A-0 I) \mathbf{v}=\mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$. In this case we find $\mathbf{v}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ works with $A \mathbf{v}=0 \cdot \mathbf{v}=\mathbf{0}$. This is a bit confusing since \mathbf{v} also shows that A is not invertible but don't lose sight of the fact that \mathbf{v} is a happy eigenvector of eigenvalue 0 . The given matrix also has eigenvalue 5 with eigenvector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Check this.

