MATH 223: Birds and Eigenvalues and Eigenvectors. An application to bird populations (Leslie Matrix). Richard Anstee

Sample computation

Let

$$A = \left[\begin{array}{cc} .7 & .3 \\ 2 & 0 \end{array} \right]$$

An application associated with this matrix is a simple model of a growing bird population. Let

 $x_n =$ no. of adults in year n,

 $y_n =$ no. of juveniles in year n.

We have a matrix equation to represent changes from year to year. We have 30% of the juveniles survive to become adults, 70% of the adults survive a year, and each adult has 2 offspring (juveniles). We have this information summarized in a matrix equation:

$$\left[\begin{array}{c} x_{n+1} \\ y_{n+1} \end{array}\right] = \left[\begin{array}{cc} .7 & .3 \\ 2 & 0 \end{array}\right] \left[\begin{array}{c} x_n \\ y_n \end{array}\right].$$

We deduce, by induction, that

$$\left[\begin{array}{c} x_n \\ y_n \end{array}\right] = A^n \left[\begin{array}{c} x_0 \\ y_0 \end{array}\right].$$

This is a sample of many applications where we wish to know what happens to A^n as $n \to \infty$.

Recall our computation of eigenvalues/eigenvectors for this matrix:

First we define an eigenvector \mathbf{x} of eigenvalue λ to be satisfy $A\mathbf{x} = \lambda \mathbf{x}$ and $\mathbf{x} \neq \mathbf{0}$. This is equivalent to $(A - \lambda I)\mathbf{x} = \mathbf{0}$ and $\mathbf{x} \neq \mathbf{0}$. This can only occur by our previous observations when $\det(A - \lambda I) = 0$ and moreover when $\det(A - \lambda I) = 0$ we can find an $\mathbf{x} \neq \mathbf{0}$ with $A\mathbf{x} = \lambda \mathbf{x}$.

$$det(A - \lambda I) = det(\begin{bmatrix} .7 - \lambda & .3\\ 2 & -\lambda \end{bmatrix})$$
$$= (.7 - \lambda)(-\lambda) - .3 \times 2$$
$$= \frac{1}{10}(10\lambda^2 - 7\lambda - 6)$$
$$= \frac{1}{10}(5\lambda - 6)(2\lambda + 1)$$

Thus we have two eigenvalues $\lambda = \frac{6}{5}, \frac{-1}{2}$. For $\lambda = \frac{6}{5}$, we solve $(A - \frac{6}{5}I)\mathbf{v} = \mathbf{0}$ for $\mathbf{v} \neq \mathbf{0}$:

$$(A - \frac{6}{5}I)\mathbf{v} = \begin{bmatrix} -.5 & .3\\ 2 & -1.2 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

The vector $\mathbf{v} = \begin{bmatrix} 3\\5 \end{bmatrix}$ works as an eigenvalue of A of eigenvalue $\frac{6}{5}$. We check

 $\begin{bmatrix} .7 & .3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 5 \end{bmatrix} = \begin{bmatrix} 3.6 \\ 6 \end{bmatrix} = \frac{6}{5} \begin{bmatrix} 3 \\ 5 \end{bmatrix}.$

For $\lambda = \frac{-1}{2}$, we solve $(A - \frac{-1}{2}I)\mathbf{v} = \mathbf{0}$ for $\mathbf{v} \neq \mathbf{0}$:

$$(A - \frac{-1}{2}I)\mathbf{v} = \begin{bmatrix} 1.2 & .3\\ 2 & .5 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 0\\ 0 \end{bmatrix}$$

The vector $\mathbf{v} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}$ works as an eigenvalue of A of eigenvalue $\frac{-1}{2}$. We check $\begin{bmatrix} .7 & .3 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ -4 \end{bmatrix} = \begin{bmatrix} -.5 \\ 2 \end{bmatrix} = \frac{-1}{2} \begin{bmatrix} 1 \\ -4 \end{bmatrix}.$

Note that we will always succeed in finding an eigenvector (a non zero vector) assuming our eigenvalue λ has det $(A - \lambda I) = 0$. Thue if you are doing such a computation and find that you are unable to find a non zero vector \mathbf{x} with $(A - \lambda I)\mathbf{x} = \mathbf{0}$, then either you made an error determining the eigenvalues or you made an error solving for the non zero vector \mathbf{x} from the equations $(A - \lambda I)\mathbf{x} = \mathbf{0}$. I have seen both errors from students.

There is one example which needs to be given, namely the case of a 0 eigenvalue.

$$A = \left[\begin{array}{rr} 1 & 2 \\ 2 & 4 \end{array} \right]$$

We compute $det(A - \lambda I) = det(\begin{bmatrix} 1 - \lambda & 2\\ 2 & 4 - \lambda \end{bmatrix}) = \lambda^2 - 5\lambda$. One of the roots is $\lambda = 0$.

For $\lambda = 0$, we solve for $(A - 0I)\mathbf{v} = \mathbf{0}$ for some $\mathbf{v} \neq \mathbf{0}$. In this case we find $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ works with $A\mathbf{v} = \mathbf{0} \cdot \mathbf{v} = \mathbf{0}$. This is a bit confusing since \mathbf{v} also shows that A is not invertible but don't lose sight of the fact that \mathbf{v} is a happy eigenvector of eigenvalue 0. The given matrix also has eigenvalue 5 with eigenvector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Check this.