Consider a vector space \(V \) with an inner product \(\langle , \rangle : V \times V \to \mathbb{R} \). We are interested in finding orthonormal bases for vector spaces. An orthonormal basis \(\{ \mathbf{w}_1, \mathbf{w}_2, \ldots, \mathbf{w}_t \} \) is a basis so that

\[
\langle \mathbf{w}_i, \mathbf{w}_j \rangle = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}
\]

An orthonormal basis has the basis vectors mutually orthogonal and of unit length.

Let \(U \) be a vector subspace of \(V \) with \(U \) having some basis \(\{ \mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_k \} \). We seek a set of vectors \(\{ \mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k \} \) which form an orthonormal basis for \(U \). The way we implement Gram-Schmidt for hand calculation, we do not normalize our vectors until the last step to avoid all the square roots.

First start with \(k = 2 \). Let \(U \) be a vector subspace of \(V \) with \(U \) having some basis \(\{ \mathbf{u}_1, \mathbf{u}_2 \} \). We set

\[
\mathbf{v}_1 = \mathbf{u}_1.
\]

Then we do the standard projection (if you are familiar with this in Physics),

\[
\mathbf{v}_2 = \mathbf{u}_2 - \text{proj}_{\mathbf{v}_1} \mathbf{u}_2
\]

We readily compute that

\[
\langle \mathbf{v}_1, \mathbf{v}_2 \rangle = \langle \mathbf{v}_1, \mathbf{u}_2 \rangle - \langle \mathbf{v}_1, \text{proj}_{\mathbf{v}_1} \mathbf{u}_2 \rangle = \langle \mathbf{v}_1, \mathbf{u}_2 \rangle - \frac{\langle \mathbf{u}_2, \mathbf{v}_1 \rangle}{\langle \mathbf{v}_1, \mathbf{v}_1 \rangle} \langle \mathbf{v}_1, \mathbf{v}_1 \rangle = 0
\]

Also we note that \(\mathbf{v}_1, \mathbf{v}_2 \in \text{span}(\mathbf{u}_1, \mathbf{u}_2) \) and moreover, we may write the equations as

\[
\mathbf{u}_1 = \mathbf{v}_1,
\]

\[
\mathbf{u}_2 = \mathbf{v}_2 + \text{proj}_{\mathbf{v}_2} \mathbf{u}_2.
\]

Thus \(\mathbf{u}_1, \mathbf{u}_2 \in \text{span}(\mathbf{v}_1, \mathbf{v}_2) \) from which we conclude \(\text{span}(\mathbf{u}_1, \mathbf{u}_2) = \text{span}(\mathbf{v}_1, \mathbf{v}_2) \). This becomes the inductive step in our proof.

Example Say we have discovered that \(\text{span}(\mathbf{u}_1, \mathbf{u}_2) \) is a basis for an eigenspace given by the equation \(3x - 2y + z = 0 \). Then we can obtain an orthonormal basis for that eigenspace. Here the inner product is the dot product.

\[
\mathbf{u}_1 = \begin{bmatrix} -1/3 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2/3 \\ 1 \\ 0 \end{bmatrix}
\]

We clear fractions and instead use

\[
\mathbf{u}_1 = \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}, \quad \mathbf{u}_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}
\]

\[
\mathbf{v}_1 = \mathbf{u}_1 = \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}, \quad \mathbf{v}_2 = \mathbf{u}_2 - \text{proj}_{\mathbf{v}_1} \mathbf{u}_2 = \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix} - \frac{\begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}}{\begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}} \begin{bmatrix} -1 \\ 0 \\ 3 \end{bmatrix}
\]
\[
\begin{bmatrix}
2 \\
3 \\
0
\end{bmatrix} - \frac{2}{10} \begin{bmatrix}
-1 \\
0 \\
3
\end{bmatrix} = \begin{bmatrix}
\frac{18}{10} \\
\frac{3}{10} \\
\frac{6}{10}
\end{bmatrix} \text{ could use } \begin{bmatrix}
18 \\
30 \\
6
\end{bmatrix} \text{ or } \begin{bmatrix}
3 \\
5 \\
1
\end{bmatrix}
\]

You may check that \(\mathbf{v}_1 \cdot \mathbf{v}_2 = 0 \) and of course \(\text{span}(\mathbf{u}_1, \mathbf{u}_2) = \text{span}(\mathbf{v}_1, \mathbf{v}_2) \). The latter isn’t immediately obvious until you look at the equation determining \(\mathbf{v}_2 \).

The general Gram-Schmidt algorithm (where we hold off normalizing our vectors until later) can be written as as follows:

\[
\begin{align*}
\mathbf{v}_1 &= \mathbf{u}_1, \\
\mathbf{v}_2 &= \mathbf{u}_2 - \text{proj}_{\mathbf{v}_1} \mathbf{u}_2, \\
\mathbf{v}_3 &= \mathbf{u}_3 - \text{proj}_{\mathbf{v}_1} \mathbf{u}_3 - \text{proj}_{\mathbf{v}_2} \mathbf{u}_3 \\
&\vdots \\
\mathbf{v}_k &= \mathbf{u}_k - \text{proj}_{\mathbf{v}_1} \mathbf{u}_k - \text{proj}_{\mathbf{v}_2} \mathbf{u}_k \cdots - \text{proj}_{\mathbf{v}_{k-1}} \mathbf{u}_k
\end{align*}
\]

Lemma 0.1 \(\text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_t\} = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_t\} \)

Proof: We do this by induction on \(t \). The result is easy for \(t = 1, 2 \) as we have done above. Now imagine we are defining \(\mathbf{v}_t \) from \(\mathbf{u}_t \) subtracting all the projections namely \(\mathbf{v}_t = \mathbf{u}_t - \text{proj}_{\mathbf{v}_1} \mathbf{u}_t - \text{proj}_{\mathbf{v}_2} \mathbf{u}_t \cdots - \text{proj}_{\mathbf{v}_{t-1}} \mathbf{u}_t \). We immediately have \(\mathbf{v}_t \subseteq \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{t-1}, \mathbf{u}_t\} \) and so using induction that \(\text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{t-1}\} = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_{t-1}\} \) we deduce that \(\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_t\} \subseteq \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_t\} \). In a similar way we have \(\mathbf{u}_t = \mathbf{v}_t + \text{proj}_{\mathbf{v}_1} \mathbf{u}_t + \text{proj}_{\mathbf{v}_2} \mathbf{u}_t \cdots + \text{proj}_{\mathbf{v}_{t-1}} \mathbf{u}_t \) and so using \(\text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_{t-1}\} = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{t-1}\} \), we obtain \(\mathbf{u}_t \in \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_{t}\} \). Thus \(\text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_t\} \subseteq \{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_t\} \).

We may conclude \(\text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_t\} = \text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_t\} \).

Lemma 0.2 After we have completed Gram-Schmidt, we have \(<\mathbf{v}_i, \mathbf{v}_j> = 0 \) for \(i \neq j \).

Proof: Use induction on \(t \) so that are induction hypothesis is that \(<\mathbf{v}_i, \mathbf{v}_j> = 0 \) for \(1 \leq i < j < t \). Assume \(i < j = t \) and then

\[
<\mathbf{v}_i, \mathbf{v}_t> = <\mathbf{v}_i, \mathbf{u}_t> - <\mathbf{v}_i, \text{proj}_{\mathbf{v}_1} \mathbf{u}_t> - <\mathbf{v}_i, \text{proj}_{\mathbf{v}_2} \mathbf{u}_t> \cdots - <\mathbf{v}_i, \text{proj}_{\mathbf{v}_{t-1}} \mathbf{u}_t>.
\]

Using induction that \(<\mathbf{v}_i, \mathbf{v}_j> = 0 \) for \(1 \leq i < j < t \), we can get rid of all the projection terms except the last so that

\[
<\mathbf{v}_i, \mathbf{v}_t> = <\mathbf{v}_i, \mathbf{u}_t> - <\mathbf{v}_i, \text{proj}_{\mathbf{v}_1} \mathbf{u}_t> = <\mathbf{v}_i, \mathbf{u}_t> - \frac{<\mathbf{v}_i, \mathbf{u}_t>}{<\mathbf{v}_i, \mathbf{v}_i>}.<\mathbf{v}_i, \mathbf{v}_i> = 0
\]

This completes the proof.

Example

\[
\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{u}_2 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \mathbf{u}_3 = \begin{bmatrix} 2 \\ 0 \end{bmatrix}
\]

\[
\mathbf{v}_1 = \mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \mathbf{u}_2 - \text{proj}_{\mathbf{v}_1} \mathbf{u}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}.
\]

\[
\mathbf{v}_3 = \mathbf{u}_3 - \text{proj}_{\mathbf{v}_1} \mathbf{u}_3 - \text{proj}_{\mathbf{v}_2} \mathbf{u}_3 = \begin{bmatrix} 2 \\ 0 \end{bmatrix} - \frac{3}{3} \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \frac{-1}{2} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1/2 \end{bmatrix}
\]

\[
\text{span}\{\mathbf{u}_1, \mathbf{u}_2, \ldots, \mathbf{u}_t\} = \text{span}\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_t\}
\]

\[
<\mathbf{v}_i, \mathbf{v}_j> = 0 \text{ for } 1 \leq i < j < t.
\]

\[
\frac{<\mathbf{v}_i, \mathbf{u}_t>}{<\mathbf{v}_i, \mathbf{v}_i>}.<\mathbf{v}_i, \mathbf{v}_i> = 0
\]

This completes the proof.
Then the following three vectors are an orthogonal basis for \mathbb{R}^n.

$$v_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1 \\ -1/2 \end{bmatrix}, \quad v_3 = \begin{bmatrix} 1 \\ -1/2 \\ -1/2 \end{bmatrix}$$

They are not orthonormal but you can divide them by their lengths to obtain an orthonormal basis for \mathbb{R}^n:

$$v_1 = \begin{bmatrix} 1/\sqrt{3} \\ 1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}, \quad v_2 = \begin{bmatrix} 0 \\ 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, \quad v_3 = \begin{bmatrix} 2/\sqrt{6} \\ -1/\sqrt{6} \\ -1/\sqrt{6} \end{bmatrix} \quad (1)$$

One application is in (2) below.

Example An important example of an orthogonal basis arises for continuous functions when we define

$$<f,g> = \int_0^{2\pi} f(x)g(x)dx.$$

One can verify that the $2n+1$ functions

$$1, \sin(x), \cos(x), \sin(2x), \cos(2x), \ldots, \sin(nx), \cos(nx)$$

are orthogonal (I can do the first few easily!). To obtain an orthonormal basis we must divide by length.

$$\int_0^{2\pi} 1dx = 2\pi$$

so

$$<\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{2\pi}} >= 1.$$

Similarly

$$\int_0^{2\pi} \sin^2(x)dx = \pi$$

and so

$$<\frac{1}{\sqrt{\pi}} \sin(x), \frac{1}{\sqrt{\pi}} \sin(x) >= 1.$$

Orthogonal Matrices

Many interesting thing happens when we have an orthonormal basis $\{v_1, v_2, \ldots, v_n\}$ in \mathbb{R}^n. Let M be the $n \times n$ matrix formed as $M = [v_1 \; v_2 \; v_3 \; \cdots \; v_n]$. We compute that $M^TM = I$ since the i,j entry of M^TM is the dot product $v_i^T v_j$. Thus $M^T = M^{-1}$.

Definition 0.3 We say an $n \times n$ M is an orthogonal matrix if $M^T = M^{-1}$. If M is an orthogonal matrix then the rows of M form an orthonormal basis for \mathbb{R}^n and the columns of M form an orthonormal basis for \mathbb{R}^n.

Example

Using the orthonormal basis from (1), we obtain

$$M = \begin{bmatrix} 1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \end{bmatrix} \quad (2)$$