We now consider a system of DE's that has complex eigenvalues. It arises from considering the Differential Equation

$$
y^{\prime \prime}=-y, \quad y(0)=1, y^{\prime}(0)=0
$$

If we set $y_{1}(t)=y$ and $y_{2}(t)=y^{\prime}$ then we can set

$$
\mathbf{y}=\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]
$$

and then we can write the DE in vector form as

$$
\frac{d}{d t} \mathbf{y}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \mathbf{y}
$$

We can compute eigenvalues and eigenvectors in the natural way using \mathbf{C} instead of \mathbf{R}.

$$
\underset{A}{\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]}=\underset{M}{\left[\begin{array}{cc}
i & -i \\
-1 & -1
\end{array}\right]} \underset{D}{\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]} \underset{M^{-1}}{\left[\begin{array}{cc}
-\frac{1}{2} i & -\frac{1}{2} \\
\frac{1}{2} i & -\frac{1}{2}
\end{array}\right]}
$$

We could use either of the three methods from above. We can use our third method above (that follows from our change of basis idea). Let \mathbf{v}_{i} be an eigenvector of eigenvalue λ_{i}. Then as solution to the DE , ignoring initial conditions, is

$$
\mathbf{y}=e^{\lambda_{i}} \mathbf{v}_{i}
$$

In order to match the initial conditions, we take the appropriate linear combination of these solutions from eigenvector/eigenvalue pairs. In our case we have

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=a e^{i t}\left[\begin{array}{c}
i \\
-1
\end{array}\right]+b e^{-i t}\left[\begin{array}{l}
-i \\
-1
\end{array}\right]
$$

We can solve for a, b by setting $t=0$, noting $e^{0}=1$, to obtain

$$
\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]=a\left[\begin{array}{c}
i \\
-1
\end{array}\right]+b\left[\begin{array}{l}
-i \\
-1
\end{array}\right]=M\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

We then solve for a, b using M^{-1} to obtain

$$
\left[\begin{array}{l}
a \\
b
\end{array}\right]=M^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{cc}
-\frac{1}{2} i & -\frac{1}{2} \\
\frac{1}{2} i & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} i \\
\frac{1}{2} i
\end{array}\right]
$$

We then can compute the solution.
Once, in a previous version of 223 , I solved this by substituting

$$
e^{i t}=\cos (t)+i \sin (t), \quad e^{-i t}=\cos (-t)+i \sin (-t)=\cos (t)-i \sin (t)
$$

Then I proceeded to solve for a, b which made things much more complicated. Setting $t=0$ first and then solving for a, b makes things easier. This is easier for computations; both methods spit out an answer. The solution becomes

$$
\mathbf{y}=-\frac{1}{2} i(\cos (t)+i \sin (t))\left[\begin{array}{c}
i \\
-1
\end{array}\right]+\frac{1}{2} i(\cos (t)-i \sin (t))\left[\begin{array}{c}
-i \\
-1
\end{array}\right]=\left[\begin{array}{c}
\cos (t) \\
-\sin (t)
\end{array}\right]
$$

Thus the solution to our DE as expected is $y=\cos (t)$ which has $y(0)=1$ and $y^{\prime}(0)=0$.
We can make some additional simplifications to save work. Let $z=c+d i \in \mathbf{C}$. Use the notation $\operatorname{Re}(z)=c$ and $\operatorname{Im}(z)=d$ to denote the real and imaginary part of z although I would caution that $\operatorname{Im}(z) \in \mathbf{R}$. In addition this conflicts with our definition $\operatorname{Im}(f)$ referring to the image of the function f. Sigh. We note that $z+\bar{z} \in \mathbf{R}$. Since we are going to get a real solution we can deduce that in the expression

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=a_{1} e^{i t}\left[\begin{array}{c}
i \\
-1
\end{array}\right]+a_{2} e^{-i t}\left[\begin{array}{l}
-i \\
-1
\end{array}\right]
$$

that $\overline{a_{1}}=a_{2}$. We can get two different real solutions from the Real and Imaginary parts of one solution

$$
\begin{gathered}
e^{i t}\left[\begin{array}{c}
i \\
-1
\end{array}\right]=(\cos t+i \sin t)\left[\begin{array}{c}
i \\
-1
\end{array}\right]=\left[\begin{array}{c}
-\sin t \\
-\cos t
\end{array}\right]+i\left[\begin{array}{c}
\cos t \\
-\sin t
\end{array}\right] \\
\operatorname{Re}\left(e^{i t}\left[\begin{array}{c}
i \\
-1
\end{array}\right]\right)=\operatorname{Re}\left((\cos t+i \sin t)\left[\begin{array}{c}
i \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
-\sin t \\
-\cos t
\end{array}\right] \\
\operatorname{Im}\left(e^{i t}\left[\begin{array}{c}
i \\
-1
\end{array}\right]\right)=\operatorname{Im}\left((\cos t+i \sin t)\left[\begin{array}{c}
i \\
-1
\end{array}\right]\right)=\left[\begin{array}{c}
\cos t \\
-\sin t
\end{array}\right]
\end{gathered}
$$

You may verify that the real part comes from the choice $a_{1}=1 / 2, a_{2}=1 / 2$ and the imaginary part comes from the choice $a_{1}=-i / 2, a_{2}=i / 2$. We now solve taking a linear combination of these two solutions (which are both real although their origin was complex):

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=a\left[\begin{array}{c}
-\sin t \\
-\cos t
\end{array}\right]+b\left[\begin{array}{c}
\cos t \\
-\sin t
\end{array}\right], \quad\left[\begin{array}{l}
y_{1}(0) \\
y_{2}(0)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

We solve and get $a=0, b=1$ yielding the solution $y_{1}(t)=\cos t, y_{2}(t)=-\sin t$.
It is not particularly helpful to note that we can compute $e^{A t}$ for this A without using complex numbers. For this problem

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], \quad A^{2}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad A^{3}=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \quad A^{4}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
$$

from which we have expresssions for all powers of A. Then

$$
\begin{gathered}
e^{A t}=I+A t+\frac{1}{2!} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots \\
=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{cc}
0 & t \\
-t & 0
\end{array}\right]+\frac{1}{2!}\left[\begin{array}{cc}
-t^{2} & 0 \\
0 & -t^{2}
\end{array}\right]+\frac{1}{3!}\left[\begin{array}{cc}
0 & -t^{3} \\
t^{3} & 0
\end{array}\right]+\frac{1}{4!}\left[\begin{array}{cc}
t^{4} & 0 \\
0 & t^{4}
\end{array}\right]+\frac{1}{5!}\left[\begin{array}{cc}
0 & t^{5} \\
-t^{5} & 0
\end{array}\right]+\cdots \\
=\left[\begin{array}{cc}
1+0-\frac{1}{2!} t^{2}+0+\frac{1}{4!} t^{4}+0 \cdots & 0+t+0-\frac{1}{3!} t^{3}+0+\frac{1}{4!} t^{5} \cdots \\
\hline 0+t+0-\frac{1}{3!} t^{3}+0+\frac{1}{5!} t^{5} \cdots & 1+0-\frac{1}{2!} t^{2}+0+\frac{1}{4!} t^{4}+0 \cdots
\end{array}\right] \\
=\left[\begin{array}{cc}
\cos (t) & -\sin (t) \\
\sin (t) & \cos (t)
\end{array}\right]
\end{gathered}
$$

