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We now consider a system of DE’s that has complex eigenvalues. It arises from considering the
Differential Equation

y′′ = −y, y(0) = 1, y′(0) = 0

If we set y1(t) = y and y2(t) = y′ then we can set

y =
[
y1(t)
y2(t)

]
and then we can write the DE in vector form as

d

dt
y =

[
0 1
−1 0

]
y

We can compute eigenvalues and eigenvectors in the natural way using C instead of R.[
0 1
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]
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We could use either of the three methods from above. We can use our third method above (that
follows from our change of basis idea). Let vi be an eigenvector of eigenvalue λi. Then as solution
to the DE, ignoring initial conditions, is

y = eλivi

In order to match the initial conditions, we take the appropriate linear combination of these solu-
tions from eigenvector/eigenvalue pairs. In our case we have[

y1(t)
y2(t)

]
= aeit

[
i
−1

]
+ be−it

[ −i
−1

]
We can solve for a, b by setting t = 0, noting e0 = 1, to obtain[

y1(0)
y2(0)

]
=
[

1
0

]
= a
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]
+ b

[ −i
−1

]
= M

[
a
b

]
We then solve for a, b using M−1 to obtain[

a
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]
We then can compute the solution.

Once, in a previous version of 223, I solved this by substituting

eit = cos(t) + i sin(t), e−it = cos(−t) + i sin(−t) = cos(t)− i sin(t)

Then I proceeded to solve for a, b which made things much more complicated. Setting t = 0 first
and then solving for a, b makes things easier. This is easier for computations; both methods spit
out an answer. The solution becomes

y = −1

2
i(cos(t) + i sin(t))

[
i
−1

]
+

1

2
i(cos(t)− i sin(t))

[ −i
−1

]
=
[

cos(t)
− sin(t)

]



Thus the solution to our DE as expected is y = cos(t) which has y(0) = 1 and y′(0) = 0.
We can make some additional simplifications to save work. Let z = c+di ∈ C. Use the notation

Re(z) = c and Im(z) = d to denote the real and imaginary part of z although I would caution
that Im(z) ∈ R. In addition this conflicts with our definition Im(f) referring to the image of the
function f . Sigh. We note that z + z̄ ∈ R. Since we are going to get a real solution we can deduce
that in the expression [

y1(t)
y2(t)

]
= a1e

it
[
i
−1

]
+ a2e

−it
[ −i
−1

]
that ā1 = a2. We can get two different real solutions from the Real and Imaginary parts of one
solution

eit
[
i
−1

]
= (cos t+ i sin t)

[
i
−1

]
=
[− sin t
− cos t

]
+ i

[
cos t
− sin t

]

Re(eit
[
i
−1

]
) = Re((cos t+ i sin t)

[
i
−1

]
) =

[− sin t
− cos t

]

Im(eit
[
i
−1

]
) = Im((cos t+ i sin t)

[
i
−1

]
) =

[
cos t
− sin t

]
You may verify that the real part comes from the choice a1 = 1/2, a2 = 1/2 and the imaginary
part comes from the choice a1 = −i/2, a2 = i/2. We now solve taking a linear combination of these
two solutions (which are both real although their origin was complex):[

y1(t)
y2(t)

]
= a

[− sin t
− cos t

]
+ b

[
cos t
− sin t

]
,

[
y1(0)
y2(0)

]
=
[

1
0

]

We solve and get a = 0, b = 1 yielding the solution y1(t) = cos t, y2(t) = − sin t.

It is not particularly helpful to note that we can compute eAt for this A without using complex
numbers. For this problem

A =
[

0 1
−1 0

]
, A2 =

[−1 0
0 −1

]
, A3 =

[
0 −1
1 0

]
, A4 =

[
1 0
0 1

]
= I

from which we have expresssions for all powers of A. Then

eAt = I + At+
1

2!
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1
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A3t3 + · · ·

=
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]
+
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]
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1
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]
+

1

3!

[
0 −t3
t3 0

]
+

1

4!

[
t4 0
0 t4

]
+

1

5!

[
0 t5

−t5 0

]
+ · · ·

=

[
1 + 0− 1

2!
t2 + 0 + 1

4!
t4 + 0 · · · 0 + t+ 0− 1

3!
t3 + 0 + 1

5!
t5 · · ·

0 + t+ 0− 1
3!
t3 + 0 + 1

5!
t5 · · · 1 + 0− 1

2!
t2 + 0 + 1

4!
t4 + 0 · · ·

]

=
[

cos(t) − sin(t)
sin(t) cos(t)

]


