First consider the system of DE's which we motivated in class using water passing through two tanks while flushing out salt contamination.

$$
\begin{aligned}
& y_{1}^{\prime}(t)=-\frac{1}{10} y_{1}(t)+\frac{1}{40} y_{2}(t) \\
& y_{2}^{\prime}(t)= \frac{1}{10} y_{1}(t)-\frac{1}{10} y_{2}(t), \quad y_{1}(0)=60, y_{2}(0)=0 \\
& \frac{d}{d t} \mathbf{y}=A \mathbf{y} \text { where } A=\left[\begin{array}{cc}
-1 / 10 & 1 / 40 \\
1 / 10 & -1 / 10
\end{array}\right]
\end{aligned}
$$

We may compute

$$
\left[\begin{array}{cc}
-1 / 10 & 1 / 40 \\
1 / 10 & -1 / 10
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right]\left[\begin{array}{cc}
-3 / 20 & 0 \\
0 & -1 / 20
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & -1 / 4 \\
1 / 2 & 1 / 4
\end{array}\right]=M D M^{-1}
$$

I offer several solutions, the first using change of variable (change of basis). The second considers the matrix exponential $\left(\mathbf{y}=e^{A t} \mathbf{y}(0)\right)$ and the third solution considers write the final solution as a linear combination of solutions to the DE to satisfy the initial conditions.

Our first idea was to rewrite $\frac{d}{d t} \mathbf{y}=A \mathbf{y}$ as $\frac{d}{d t} \mathbf{y}=M D M^{-1} \mathbf{y}$ and then $M^{-1} \frac{d}{d t} \mathbf{y}=D M^{-1} \mathbf{y}$. Then using the linearity of differentiation, we have $\frac{d}{d} M^{-1} \mathbf{y}=D M^{-1} \mathbf{y}$. We set

$$
\mathbf{z}=M^{-1} \mathbf{y} \text { and so } \mathbf{y}=M \mathbf{z}
$$

and obtain the 'easy' system of differential equations

$$
\frac{d}{d t} \mathbf{z}=D \mathbf{z}
$$

namely

$$
\begin{aligned}
\frac{d}{d t} z_{1}(t) & =(-3 / 20) z_{1}(t) \\
\frac{d}{d t} z_{2}(t) & =(-1 / 20) z_{2}(t)
\end{aligned}
$$

which we solve as

$$
z_{1}(t)=z_{1}(0) e^{(-3 / 20) t}, \quad z_{2}(t)=z_{2}(0) e^{(-1 / 20) t}
$$

We may compute $z_{1}(0), z_{2}(0)$ using $y_{1}(0)=60$ and $y_{2}(0)=0$ and $\mathbf{z}=M^{-1} \mathbf{y}$ to obtain $z_{1}(0)=30$ and $z_{2}(0)=30$. Now we use $\mathbf{y}=M \mathbf{z}$ and obtain

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-2 & 2
\end{array}\right]\left[\begin{array}{l}
30 e^{(-3 / 20) t} \\
30 e^{(-1 / 20) t}
\end{array}\right]=\left[\begin{array}{c}
30 e^{(-3 / 20) t}+30 e^{(-1 / 20) t} \\
-60 e^{(-3 / 20) t}+60 e^{(-1 / 20) t}
\end{array}\right]
$$

TThe term involving $e^{(-1 / 20) t}$ dominates. This solution technique of changing variables (changing basis) to make the system of differential equations easy to solve (diagonalization) follows our usual pattern.

A second solution involves tackling the problem directly in what first appears a bit unlikely:

$$
\frac{d}{d t} \mathbf{y}=A \mathbf{y}, \quad \mathbf{y}=e^{A t} \mathbf{y}(0)
$$

Recall that

$$
e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}+\frac{1}{3!} A^{3} t^{3}+\cdots
$$

$$
\frac{d}{d t} e^{A t}=0+A+A^{2} t+\frac{1}{2} A^{3} t^{2}+\cdots=A e^{A t}
$$

where the derivative has been done entrywise. We note that $e^{A t}$ at $t=0$ is in fact $e^{0}=I$ (we are exponentiating the 2×2 zero matrix) and hence $e^{A t} \mathbf{y}(0)$ at $t=0$ is indeed $\mathbf{y}(0)$ as desired.

We have techniques for doing this namely:

$$
\mathbf{y}=e^{A t} \mathbf{y}(0)=M e^{D t} M^{-1} \mathbf{y}(0)
$$

This technique can be used for non diagonalizable matrices A if we can find a similar matrix B (i.e. $A=M B M^{-1}$) for which $e^{B t}$ is easy to compute.

A third solution technique is commonly used when solving DE's, we write our solution in vector form in terms of the eigenvectors

$$
\left[\begin{array}{l}
y_{1}(t) \\
y_{2}(t)
\end{array}\right]=30 e^{(-3 / 20) t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+30 e^{(-1 / 20) t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

This suggests another solution strategy. We seek solutions of the form
$e^{\lambda t} \mathbf{v}$ with $\frac{d}{d t} e^{\lambda t} \mathbf{v}=\lambda e^{\lambda t} \mathbf{v}=e^{\lambda t} A \mathbf{v}$ by solving $A \mathbf{v}=\lambda \mathbf{v}$ and hence solving for eigenvalues and eigenvectors of A. Then (it needs to be proven!) we write an arbitrary solution to the system of DE's as

$$
\mathbf{y}=a e^{(-3 / 20) t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+b e^{(-1 / 20) t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

and solving for a, b given the values $\mathbf{y}(0)$.
Consider the system

$$
\begin{array}{lll}
y_{1}^{\prime}(t) & = & +y_{2}(t) \\
y_{2}^{\prime}(t) & =-4 y_{1}(t) & +4 y_{2}(t)
\end{array}, \quad y_{1}(0)=60, y_{2}(0)=0
$$

We begin by noticing the following:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right], \quad M=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right], \quad S=\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right] \\
{\left[\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
0 & 2
\end{array}\right]}
\end{gathered}
$$

We can solve the system of DE's by the matrix exponential idea: $\mathbf{y}(t)=e^{A t} \mathbf{y}(0)=M e^{S t} M^{-1} \mathbf{y}(0)$. For this we need to have a way to compute S^{n} and then $e^{t S}$ which is an assignment question.

