1. Determine bases for the following subspaces of \mathbb{R}^3.
 a) the line $x = 5t, y = -2t, z = t$.
 b) all vectors of the form $(a, b, c)^T$ such that $a - 3b = 2c$.

2. Let
 \[
 A = \begin{bmatrix}
 0 & 1 & 1 & 2 & -3 & 1 \\
 0 & 2 & 0 & 6 & -6 & 0 \\
 0 & 3 & 7 & 2 & -9 & 7 \\
 0 & 2 & 2 & 4 & -4 & 3
 \end{bmatrix}
 \]
 Determine a basis for the column space of A (chosen from columns of A) and determine a basis for the row space of A. Also give a basis for the nullspace of A, namely $\{x \in \mathbb{R}^6 : Ax = 0\}$.

 Such questions appear on your practice for Midterm 2 although in those questions the reduction to staircase pattern has already occurred, saving you some computation.

3. Show that the set of all vectors $(b_1, b_2, b_3, b_4)^T$ such that the system below is consistent (i.e. can be solved)
 \[
 \begin{bmatrix}
 2 & 3 & 1 \\
 4 & 3 & 3 \\
 1 & 3 & 0 \\
 2 & 0 & 2
 \end{bmatrix}
 \begin{bmatrix}
 x
 \end{bmatrix}
 =
 \begin{bmatrix}
 b_1 \\
 b_2 \\
 b_3 \\
 b_4
 \end{bmatrix}
 \]
 is a subspace of \mathbb{R}^4. Then find a basis of the subspace.

4. We say two $n \times n$ matrices A, B are similar if there is an invertible matrix M with $A = MBM^{-1}$. We have shown (assignment 4, question 5) that A, B being similar implies $\det(A - \lambda I) = \det(B - \lambda I)$. Assume A has $k \leq n$ linearly independent eigenvectors u_1, u_2, \ldots, u_k all of eigenvalue 2.
 a) Explain why we can always extend u_1, u_2, \ldots, u_k to an invertible $n \times n$ matrix M where the first k columns of M are u_1, u_2, \ldots, u_k.
 b) Assume that the dimension of the eigenspace of A of eigenvalue 2 is exactly k. Show that the multiplicity of 2 as a root of $\det(A - \lambda I)$ is at least k. Hint: Extend the result of assignment 4 question 4 by using the k linearly independent eigenvectors u_1, u_2, \ldots, u_k of A of eigenvalue 2 in M and then obtaining the first k columns of the matrix B where $A = MBM^{-1}$.
 Comment and not a hint: If A were diagonalizable with $A = MDM^{-1}$ for a diagonal matrix D, then we know automatically that $\dim(\text{eigenspace of } A \text{ for } \lambda = 2) \geq k$ as a root in $\det(A - \lambda I) = \det(D - \lambda I)$ and so we have equality! There are other ways of seeing this for diagonalizable matrices. Our result of this question seems helpful for non-diagonalizable matrices.

5. Let A be an $n \times n$ matrix with various eigenvalues including λ and μ with $\lambda \neq \mu$. Let L, M be the eigenspaces associated with eigenvalues λ, μ respectively. Let $\{u_1, u_2, \ldots, u_p\}$ be a basis for L and let $\{v_1, v_2, \ldots, v_q\}$ be a basis for M. Show that $\{u_1, u_2, \ldots, u_p, v_1, v_2, \ldots, v_q\}$ is a linearly independent set of $p + q$ vectors. (Hint: try $p = 1$ and $q = 1$ to start). Comment: You could explore the case if there were three different eigenvalues and three bases for the eigenspaces).

6. Let $M_{3 \times 3}$ denote the vector space of all 3×3 matrices (over \mathbb{R}). Consider following transformation
 \[f : M_{3 \times 3} \to M_{3 \times 3}, f(A) = A^T\]
 Show that this is a linear transformation.

 We say that a matrix A is symmetric if $A^T = A$ and we say that a matrix A is skew-symmetric if $A^T = -A$.

MATH 223 Assignment #6 due Friday October 28.
a) Warmup question: Give a basis for $M_{3\times3}$.

b) What is the dimension of the eigenspace of eigenvalue 1 for f? Explain.

c) What is the dimension of the eigenspace of eigenvalue -1 for f? Explain.

d) Now use the previous question (and other facts) to show that any $A \in M_{3\times3}$ is a linear combination of a symmetric matrix and a skew-symmetric matrix (you could show this directly of course but I’m asking you to use linear independence/dimension arguments).

7. Write a proof of the result quoted in class namely that for every matrix A, the rank(A) is the maximum k such that A has a $k \times k$ submatrix which is invertible. Recall that a submatrix of A is obtained by deleting rows and columns (such a minor in our definition of determinant) or vice versa by selecting the matrix whose entries are in specified rows and columns of A. The set of rows and columns selected can be quite different.

8. Let A be an $n \times n$ matrix. Assume that we have factored det($A - \lambda I$) into linear factors, namely
\[\det(A - \lambda I) = \prod_{i=1}^{n} (\lambda_i - \lambda). \]
Show that
\[\prod_{i=1}^{n} \lambda_i = \det(A) \quad \text{and} \quad \sum_{i=1}^{n} \lambda_i = \text{tr}(A). \]

The second is less obvious but consider the coefficient of λ^{n-1} in $\det(A - \lambda I)$. You may use this result in other work even if you can’t prove it here.