1. Given the three vectors
\[e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, e_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \]
consider each of the 6 possible orderings of the vectors as three columns of a 3 \(\times \) 3 matrix. The three orderings corresponding to the right hand rule are the rotations of \(e_1, e_2, e_3 \) so the orderings \(e_1, e_2, e_3 \) and \(e_2, e_3, e_1 \) and \(e_3, e_1, e_2 \) which correspond to the following three matrices
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\quad \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\quad \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
and we readily verify that they have determinant +1. The remaining three orderings \(e_1, e_3, e_2 \) and \(e_2, e_1, e_3 \) and \(e_3, e_2, e_1 \) which correspond to the following three matrices
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{bmatrix}
\quad \begin{bmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{bmatrix}
\quad \begin{bmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
and we readily verify that they have determinant -1.

2. Which of the following are subspaces of \(\mathbb{R}^3 \)?
 a) We see that \(V = \{(a, 0, 0)^T : a \in \mathbb{R}\} \subseteq \mathbb{R}^3 \). We verify that \((a, 0, 0)^T + (b, 0, 0)^T = (a+b, 0, 0)^T \in V \) and \(k(a, 0, 0)^T = (ka, 0, 0)^T \in V \) and so \(V \) is a vector space. Alternatively we could verify that \(\text{Vspan}\{(1, 0, 0)^T\} \). Any span is a vector space. This idea can be used in other questions but checking closure is typically easier than finding a spanning set.
 b) We have \(V = \{(a, b, c)^T : c = a + b, \quad a, b, c \in \mathbb{R}\} \subseteq \mathbb{R}^3 \). We verify that \((a, b, c)^T + (d, e, f)^T = (a+d, b+e, c+f)^T \) and if \(a + b = c \) and \(d + e = f \), then \(a + b + d + e = (a+d) + (b+e) = c + f \). Thus \((a + d, b + e, c + f)^T \in V \). Similarly, \(k(a, b, c)^T = (ka, kb, kc)^T \) and if \(a + b = c \) then \(k(a + b) = ka + kb = kc \). Thus \((ka, kb, kc)^T \in V \). Thus, by closure, \(V \) is a vector space. Again we have \(V = \text{span}\{(1, 0, 1)^T, (0, 1, 1)^T\} \) but this requires more careful checking.

3. Which of the following are subspaces of the vector space of all functions \(f \) with domain \(\mathbb{R} \) and range contained in \(\mathbb{R} \)?
 a) Let \(V = \{f : f(-1) = 0 \text{ for all } x \in \mathbb{R}\} \). We see that for \(f, g \in V \) we have \((f + g)(-1) = f(-1) + g(-1) = 0 + 0 = 0 \) (so \(f + g \in V \)) and \((kf)(-1) = k \cdot f(-1) = k \cdot 0 = 0 \). Hence \(kf \in V \). Thus \(V \) is a vector space.
 b) Let \(V = \{f : f(x) \leq 0 \text{ for all } x \in \mathbb{R}\} \). The function \(f(x) = -x^2 \in V \) but \(-(f) \not\in V \) so \(V \) is not a vector space.
 c) The set of all \(f \) of the form \(k_1 + k_2 \sin(x) \) where \(k_1, k_2 \) are real numbers is easily seen to be \(\text{span}\{1, \sin(x)\} \) and so is a vector space.

4. Let \(n \) be given. Which of the following are subspaces of the vector space of all \(n \times n \) matrices whose entries are real numbers.
 a) Let \(V = \{A = (a_{ij}) : \text{tr}(A) = 0\} \). We have \(A = (a_{ij}) \in V \) if \(a_{11} + a_{22} + \cdots + a_{nn} = 0 \). Similarly we have \(B = (b_{ij}) \in V \) if \(b_{11} + b_{22} + \cdots + b_{nn} = 0 \). Now \(\text{tr}(A + B) = (a_{11} + b_{11}) + (a_{22} + b_{22}) + \cdots + (a_{nn} + b_{nn}) = a_{11} + a_{22} + \cdots + a_{nn} + b_{11} + b_{22} + \cdots + b_{nn} = 0 + 0 = 0 \) and also \(\text{tr}(kA) = ka_{11} + ka_{22} + \cdots + ka_{nn} = k(a_{11} + a_{22} + \cdots + a_{nn}) = 0 \). Thus \(V \) is a vector space.
 b) Let \(V_B = \{A : AB = BA\} \). Then for \(A, C \in V \), we have \((A + C)B = AB + CB = BA + BC = B(A + C) \) and \((kA)B = k(AB) = k(BA) = B(kA) \). Hence \(V \) is a vector space.
c) The set of all \(n \times n \) matrices \(A \) such that the system of equations \(Ax = 0 \) has only the trivial solution \(x = 0 \) is the set of all \(n \times n \) matrices with non zero determinant. Now \(\det(I) = 1 \neq 0 \) and \(\det(-I) = (-1)^n \neq 0 \) yet \(I + (-I) = 0 \) and \(\det(0) = 0 \). Thus we do not have closure; the set of matrices is not a vector space.

5. Consider the two dimensional vector space \(V = \text{span}(\cos^2(x), \sin^2(x)) \), a subspace of all functions from \(\mathbb{R} \to \mathbb{R} \). Which of the following belong to \(V \) (the argument to show \(f \notin V \) will be more difficult).

(a) The zero function \(0 \) is the \(0 \) vector in the vector space of functions and is easily obtained as \(0 \) times any function (in actual fact it is viewed as the outcome of the empty linear combination; a linear combination of no vectors) and so immediately \(0 \in \text{span}(\cos^2(x), \sin^2(x)) \).

(b) We know \(2 = 2(\cos^2(x) + \sin^2(x)) \in \text{span}(\cos^2(x), \sin^2(x)) \).

(c) We show that \(3 + x^2 \notin \text{span}(\cos^2(x), \sin^2(x)) \) by showing that the three functions are linearly independent. If we evaluate the functions at \(0, \pi/4, \pi/2 \), we check that

\[
\begin{vmatrix}
1 & 0 & 3 \\
1/2 & 1/2 & 3 + \pi^2/16 \\
0 & 1 & \pi^2/4
\end{vmatrix} = \pi^2/16 \neq 0
\]

This could be discovered by considering the very different growths of the functions, namely \(3 + x^2 \) goes to infinity while the other functions have range in \([0, 1]\).

(d) We know \(\cos(2x) = \cos^2(x) - \sin^2(x) \in \text{span}(\cos^2(x), \sin^2(x)) \).

6. True or False (Give reasons!) If \(v_1, v_2, v_3 \) are non zero vectors and \(\{v_1, v_2, v_3\} \) are linearly dependent then each vector in the set is expressible as a linear combination of the other two.

False: Take \(\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\} \). The last vector is not a linear combination of the other two. For the conclusion to be true it would suffice to have a linear dependency that has non zero coefficients for each of the three vectors.

Other examples may arise with \(v_1 = 0 \).

7. Assume that 1 and \(\sqrt{2} \) are linearly dependent and there does exist 4 integers \(a, b, c, d \) with \(b \neq 0, d \neq 0 \) and not both \(a = 0 \) and \(c = 0 \), where in addition \(\gcd(a, b) = \gcd(c, d) = 1 \). which satisfy

\[
a/b \times 1 + c/d \times \sqrt{2} = 0.
\]

Assume that \(c \neq 0 \) and then \(x\sqrt{2} = -\frac{ad}{bc} = \frac{p}{q} \) for some integers \(p, q \) with \(\gcd(p, q) = 1 \). Squaring both sides, yields \(2 = \frac{p^2}{q^2} \). If you know the unique factorization of integers as a product of primes, we immediately have that the power of 2 in \(p^2 \) is even as is the power of 2 in \(q^2 \) and so we have a contradiction. Alternately, we write \(2q^2 = p^2 \) and so \(p^2 \) is even and so \(p \) is even, namely \(p = 2r \) for some integer \(r \). But then \(2q^2 = (2r)^2 = 4r^2 \), and so \(q^2 \) must be even and so \(q \) is even. This violates are assumption that \(\gcd(p, q) = 1 \). Thus \(p, q \) can’t exist and so \(a, b, c, d \) can’t exist.

Interestingly you can track down proofs of the irrationality of \(\sqrt{2} \) by googling ‘square root of 2’ and getting a wikipedia article.

8. Continuing question 5 from assignment 2, compute \(e^{xS} \). We have

\[
S^k = \begin{bmatrix}
\lambda & 1 \\
0 & \lambda
\end{bmatrix}^k = \begin{bmatrix}
\lambda^k & k\lambda^{k-1} \\
0 & \lambda^k
\end{bmatrix}
\]

We can now compute

\[
e^{tS} = I + tS + \frac{1}{2!}t^2S^2 + \frac{1}{3!}t^3S^3 + \cdots
\]
\[I + t \left[\begin{array}{cc} \lambda & 1 \\ 0 & \lambda \end{array} \right] + \frac{1}{2!} t^2 \left[\begin{array}{cc} \lambda^2 & 2\lambda \\ 0 & \lambda^2 \end{array} \right] + \frac{1}{3!} t^3 \left[\begin{array}{cc} \lambda^3 & 3\lambda^2 \\ 0 & \lambda^3 \end{array} \right] + \cdots \]
\[= \left[1 + t\lambda + \frac{1}{2!} t^2 \lambda^2 + \cdots \right] \left[\begin{array}{c} \lambda \\ 0 \end{array} \right] + t^2 \lambda + \frac{1}{2!} t^3 \lambda^2 + \cdots \]
\[= \left[e^{t\lambda} \begin{array}{c} 1 \\ 0 \end{array} \right] \]

9. Let \(J \) denote the \(n \times n \) matrix of all 1’s. We wish to compute \(\det(aJ + bI) \).

If we apply gaussian elimination to \(Jv = 0 \) (seeking eigenvectors of eigenvalue 0) we quickly find there is one corner variable and \(n - 1 \) free variables and so it is natural to choose one eigenvector associated with each free variable.

\[v_1 = \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad v_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad v_3 = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \quad v_{n-1} = \begin{bmatrix} -1 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \]

We have chosen these vectors so that by Gaussian Elimination techniques we have \(\{x : Jx = 0\} = \text{span}\{v_1, v_2, \ldots, v_{n-1}\} \).

Let \(v_n = 1 \) denote the vector of \(n \) 1’s. Note that \(Jv_n = nv_n \) so that \(v_n \) is an eigenvector of \(J \) of eigenvalue \(n \).

Assume \(\{v_1, v_2, \ldots, v_n\} \) are linearly dependent namely there are coefficients \(a_1, a_2, \ldots, a_n \) not all zero so that

\[\sum_{i=1}^{n} a_i v_i = 0 = \sum_{i=1}^{n-1} a_i v_i + a_n v_n \]

Now \(\sum_{i=1}^{n-1} a_i v_i \) is an eigenvector \(u \) of eigenvalue 0 (if the sum \(\neq 0 \)) and \(a_n v_n \) is an eigenvector \(v \) of eigenvalue \(n \) (if \(a_n v_n \neq 0 \)). By our previous observations (assignment 2, question 1b) we cannot have \(u + v = 0 \). Thus both \(u \) and \(v \) are 0. If \(u = 0 \), then by the linear independence of \(v_1, v_2, \ldots, v_{n-1} \) we obtain \(a_1 = a_2 = \cdots = a_{n-1} \). If \(v = 0 \), then since \(v_n \neq 0 \), then \(a_n = 0 \). This is a contradiction. We now deduce that \(\{v_1, v_2, \ldots, v_n\} \) is linearly independent. and hence if we form the matrix \(M = [v_1 v_2 \cdots v_n] \) then \(M \) is invertible. If we let \(D \) be the diagonal matrix with \(n-1 \) 0’s on the diagonal and one 1 in the final row and column then \(AM = MD \).

We now apply the ideas from our midterm question or otherwise to compute \(\det(aJ + bI) \) as follows \(\det(aJ + bI) = \det(aM^{-1}DM + bI) = \det(M^{-1}(aD + bI)M) = \det(aD + bI) \). Thus \(aD + bI \) has entries \(a \cdot 0 + b \cdot 1 \) on \(n-1 \) of the diagonal entries and \(a \cdot n + b \cdot 1 \) on the last diagonal entry.

Hence \(\det(aJ + bI) = \det(aD + bI) = b^{n-1}(an + b) \).

Note that the question 1 iii) is the \(4 \times 4 \) case of \(\det(J + I) \).

10. We repeat assignment 3, question 8 for a larger matrix. You may restrict to the \(3 \times 3 \) case. Let \(A \) be a \(3 \times 3 \) matrix and let \(u \) be a vector. Let

\[A^n u = \begin{bmatrix} x_n \\ y_n \\ z_n \end{bmatrix} \]

Assume there is a vector \(v \) with

\[\lim_{n \to \infty} \frac{A^n u}{x_n} = v. \]
(this requires \(x_n \neq 0\); there are ways to handle \(x_n = 0\) which we shall ignore here). Show that \(v\) is an eigenvector of \(A\). You may assume that \(u, v\) are linearly independent and that there is a third vector \(w\) with \(M = [u \ v \ w]\) being invertible and so \(u, v, w\) are linearly independent (i.e. we can extend \(u, v\) to a basis). You can consider the linear transformation \(f(x) = Ax\) with respect to this new basis \([u \ v \ w]\).

Following the proof we gave for this question in the \(2 \times 2\) case, we start with expressing \(A^n u\) as a linear combination of \(u, v, w\). Thus

\[
\begin{bmatrix}
x_n \\
y_n \\
z_n
\end{bmatrix} = M \begin{bmatrix}
u_n \\
v_n \\
w_n
\end{bmatrix}, \quad \begin{bmatrix}
u_n \\
v_n \\
w_n
\end{bmatrix} = M^{-1} \begin{bmatrix}
x_n \\
y_n \\
z_n
\end{bmatrix}
\]

We note that \(u_n, w_n\) must be small compared to \(v_n\) (for large \(n\)) in order that \(A^n u = u_n u + v_n v + w_n w\) satisfy the desired limit. In particular \(v_n \neq 0\) for large \(n\). Also \(|u_n/v_n|\) and \(|w_n/v_n|\) can be chosen to be suitably small for \(n\) large. Or perhaps it is easier to write \(\lim_{n \to \infty} u_n/v_n = \lim_{n \to \infty} w_n/v_n = 0\). Now compute \(A^{n+1} u = A(A^n u) = A(u_n u + v_n v + w_n w)\). We write \(A\) with respect to the vectors \([u, v, w]\). So we write \(A = MBM^{-1}\). We think that \(B\) is the same linear transformation as \(A\) but written in blue coordinates. See the online notes on white/blue coordinates. Now let

\[
B = \begin{bmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{bmatrix}
\]

We have \(A(u_n u + v_n v + w_n w) = (au_n + bv_n + cw_n)u + (du_n + ev_n + fw_n)v + (gu_n + hv_n + iw_n)w\). Thus \(u_{n+1} = au_n + bv_n + cw_n, v_{n+1} = du_n + ev_n + fw_n\) and \(w_{n+1} = gu_n + hv_n + iw_n\). We would like to show \(b = h = 0\) which would show that \(v\) is an eigenvector of eigenvalue \(e\). We must have \(|u_{n+1}/v_{n+1}| = |(au_n + bv_n + cw_n)/(du_n + ev_n + fw_n)|\) small for large \(n\) but dividing top and bottom by \(v_n\) yields something close to the ratio \(b/e\). Now if \(b, e \neq 0\), then \(b/e\) is “far away” from 0 (essentially \(b/e\) different from 0) but \(|(au_n + bv_n + cw_n)/(du_n + ev_n + fw_n)|\) is small for large \(n\). Thus \(b = 0\). Similarly we must have \(|w_{n+1}/v_{n+1}| = |(gu_n + hv_n + iw_n)/(du_n + ev_n + fw_n)|\) small for large \(n\) and so \(h = 0\). But now \(Av = ev\) and so \(v\) is an eigenvector of eigenvalue \(e\).

It is easiest to think limits. We have

\[
\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{w_n}{v_n} = \lim_{n \to \infty} \frac{au_n + bv_n + cw_n}{du_n + ev_n + fw_n} = \lim_{n \to \infty} \frac{gu_n + hv_n + iw_n}{du_n + ev_n + fw_n} = 0
\]

Now we compute

\[
\lim_{n \to \infty} \frac{au_n + bv_n + cw_n}{du_n + ev_n + fw_n} = \lim_{n \to \infty} \frac{a u_n}{d u_n} + b + c \frac{w_n}{w_n} = \frac{b}{e} = 0
\]

Thus we conclude \(b = 0\). Similarly \(h = 0\) and so \(v\) is an eigenvector of eigenvalue \(e\).

11. This is a harder contest type problem. Let \(A\) be a \(2013 \times 2014\) matrix of integer entries such that each row sum is 0 (i.e. \(A \mathbf{1} = \mathbf{0}\) where \(\mathbf{1}\) is the \(2013 \times 1\) vector of 1’s and \(\mathbf{0}\) is the \(2013 \times 1\) vector of 0’s). Show that \(\det(AA^T) = 2014k^2\) for some integer \(k\).

Here is a solution. Form a new \(2014 \times 2014\) matrix \(B\) from \(A\) by adding a row of 2014 1’s to the bottom of \(A\). The row of 1’s dot any row of \(A\) is 0 and so we find that \(BB^T\) is

\[
\begin{bmatrix}
AA^T & \mathbf{0} \\
\mathbf{0}^T & 2014
\end{bmatrix}
\]
Thus $\det(BB^T) = 2014 \times \det(AA^T)$ Now $\det(BB^T) = (\det(B))^2$. Thus $(\det(B))^2 = 2014 \times \det(AA^T)$. Now $\det(B)$ is an integer. In any factorization of an integer squared, each prime will appear an even number of times. Noting that $2014 = 2 \times 19 \times 53$, we deduce that $\det(AA^T)$ must be $2014k^2$ for some integer k.

I had a much more involved proof that also works that I will post on our website. The hint makes this solution seem the best.