1. Show that the 2×2 matrix of 0’s is diagonalizable (I mention this because many students confuse invertibility and diagonalizability; they are not related).

2. Let A_k denote the 2×2 matrix

$$A_k = \begin{bmatrix} k & 1 \\ -1 & 3 \end{bmatrix}$$

For what values of k is A_k diagonalizable? Namely, can we find two eigenvectors u, v of A_k so that if we let $M = [u \ v]$ then M is invertible? Use 2(b) from assignment 2 to handle the case of two different eigenvalues; you need not explicitly find the eigenvectors in that case.

I wish to see the solutions to a system of equations in Parametric Vector Form (or Vector Parametric Form). For example if the set of solutions is:

$$x_1 = -3r - 4s - 2t$$
$$x_2 = r$$
$$x_3 = -2s$$
$$x_4 = s$$
$$x_5 = t$$
$$x_6 = 1/3$$

for all choices $r, s, t \in \mathbb{R}$ then we can write the set of solutions in parametric vector form as follows:

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1/3 \end{bmatrix} + r \begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + s \begin{bmatrix} -4 \\ 0 \\ -2 \\ 0 \\ 0 \\ 1 \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad r, s, t \in \mathbb{R}$$

3. Give the solutions in vector parametric form for the plane $\pi = \{(x, y, z) : 2x - 2y + 3z = 5\}$.

4. Give the vector parametric form of all solutions to the following system of equations:

$$2x_1 + 4x_4 + 6x_5 = 14$$
$$2x_1 + 5x_4 + 7x_5 = 16$$
$$3x_1 + 2x_2 + 8x_4 + 9x_5 = 27$$
$$3x_1 + 4x_2 + 13x_4 + 12x_5 = 39$$

5. Express the line given by the vectors

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} + s \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}, \quad s \in \mathbb{R}$$

as the set of solutions to a system of equations in x, y, z (two equations suffice; eliminate s). Then use Gaussian Elimination on this system of equations in x, y, z to re-express the solutions in vector parametric form.

6. Express the solutions to

$$\begin{bmatrix} 0 & 1 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} 7 \\ 5 \\ 0 \end{bmatrix}$$
in vector parametric form as \(\mathbf{x} = \mathbf{a} + s \mathbf{b} + t \mathbf{c} + u \mathbf{d} \). Show that the only solution to

\[
\begin{bmatrix}
 b & c & d
\end{bmatrix}
\begin{bmatrix}
 s \\
 t \\
 u
\end{bmatrix} = 0 \quad \text{is} \quad \begin{bmatrix}
 s \\
 t
\end{bmatrix} = 0.
\]

7. Express the inverse of the following matrix \(A \) as a product of elementary matrices and use this product to express the matrix \(A \) as a product of elementary matrices.

\[
A = \begin{bmatrix}
1 & 1 & 0 \\
2 & 3 & 1 \\
0 & 0 & 1
\end{bmatrix}
\]

8. Let \(A \) be a \(2 \times 2 \) matrix with first column \(\mathbf{x} \) and second column \(\mathbf{y} \). We wish to show that \(|\det(A)| \) is the area of the parallelogram formed by the two vectors \(\mathbf{x}, \mathbf{y} \). Using assignment 2, question 2 (a), we readily deduce that \(|\det(A)| = 0 \) if and only if the parallelogram is degenerate with no area. So assume \(|\det(A)| \neq 0 \).

a) There exists an angle \(\theta \) such that \(R(\theta) \mathbf{x} = \mathbf{x}' \) points in the direction of the \(x \)-axis. Let \(\mathbf{y}' = R(\theta) \mathbf{y} \). Explain why the area of the parallelogram formed by \(\mathbf{x}', \mathbf{y}' \) is the same as the area of the parallelogram formed by the two vectors \(\mathbf{x}, \mathbf{y} \).

b) We can choose a value \(s \) so that if we set \(S = \begin{bmatrix}
1 & s \\
0 & 1
\end{bmatrix} \), then this shear matrix has \(S \mathbf{x}' = \mathbf{x}' \) while \(S \mathbf{y}' = \mathbf{y}'' \) has \(\mathbf{y}'' \) in the direction of the \(y \)-axis or its opposite. Explain why the area of the parallelogram formed by \(\mathbf{x}', \mathbf{y}'' \) is the same as the area of the parallelogram formed by the two vectors \(\mathbf{x}', \mathbf{y}' \).

c) If we let \(B \) be a \(2 \times 2 \) matrix with first column \(\mathbf{x}' \) and second column \(\mathbf{y}'' \), Explain why \(|\det(B)| \) is the area of the rectangular box formed by \(\mathbf{x}', \mathbf{y}'' \).

d) Using the product rule for determinants (\(\det(EF) = \det(E) \det(F) \) for any pair of \(2 \times 2 \) matrices) and verifying that \(\det(R(\theta)) = 1 \) and \(\det(S) = 1 \), show that \(|\det(A)| \) is the area of the parallelogram formed by the two vectors \(\mathbf{x}, \mathbf{y} \).

9. This is harder than question 7 from assignment 2 and essentially is the reverse observation. Let \(A \) be a \(2 \times 2 \) matrix (not necessarily diagonalizable) and define

\[
\begin{bmatrix}
 x_n \\
 y_n
\end{bmatrix} = A^n \begin{bmatrix}
 1 \\
 2
\end{bmatrix}.
\]

Assume \(\lim_{n \to \infty} \frac{x_n}{y_n} = 1 \). Show that \(\begin{bmatrix}
 1 \\
 1
\end{bmatrix} \) is an eigenvector of \(A \).

Hint: This is one possible approach. Explain why we can find \(c_1, c_2, c_3, c_4 \) with

\[
A \begin{bmatrix}
 1 \\
 1
\end{bmatrix} = c_1 \begin{bmatrix}
 1 \\
 1
\end{bmatrix} + c_2 \begin{bmatrix}
 1 \\
 2
\end{bmatrix}; \quad A \begin{bmatrix}
 1 \\
 2
\end{bmatrix} = c_3 \begin{bmatrix}
 1 \\
 1
\end{bmatrix} + c_4 \begin{bmatrix}
 1 \\
 2
\end{bmatrix}.
\]

In effect this rewrites the matrix \(A \) with respect to the two vectors \(\begin{bmatrix}
 1 \\
 1
\end{bmatrix}, \begin{bmatrix}
 1 \\
 2
\end{bmatrix} \). What do you need to show about \(c_1, c_2, c_3, c_4 \) so that \(\begin{bmatrix}
 1 \\
 1
\end{bmatrix} \) is an eigenvector of \(A \)?

Show that we can write

\[
A^n \begin{bmatrix}
 1 \\
 2
\end{bmatrix} = \frac{x_n}{y_n} \quad \text{as} \quad a \begin{bmatrix}
 1 \\
 1
\end{bmatrix} + b \begin{bmatrix}
 1 \\
 2
\end{bmatrix}.
\]

Can you say anything about \(a, b \) ?

Now compare \(A^n \begin{bmatrix}
 1 \\
 2
\end{bmatrix} \) **with** \(A^{n+1} \begin{bmatrix}
 1 \\
 2
\end{bmatrix} = A \left(A^n \begin{bmatrix}
 1 \\
 2
\end{bmatrix} \right) \).