Math 223 Assignment #4 due Friday October 3 in class. Midterm is scheduled for Monday October 6. A practice midterm is posted.

1. Compute

i) \(\det \begin{bmatrix} 3 & -5 \\ -6 & 10 \end{bmatrix} \),

ii) \(\det \begin{bmatrix} 3 & 6 & 2 \\ 4 & 7 & \pi \\ 1 & 2 & 0 \end{bmatrix} \),

iii) \(\det \begin{bmatrix} 0 & 3 & 101 \\ 0 & e & 97 \\ 0 & 1 & 98 \end{bmatrix} \),

iv) \(\det \begin{bmatrix} 2 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \\ 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 2 \end{bmatrix} \)

2. Use Cramer’s rule to find the inverse of the following (when it exists)

\[A = \begin{bmatrix} x & 1 & 1 \\ 1 & 1 & x \\ x & 2 & 1 \end{bmatrix} \]

3. On the first midterm you will be expected to compute the eigenvalues and associated eigenvectors for a 3 \(\times \) 3 matrix in much the same way you did question 2 on assignment 2. Let

\[A = \begin{bmatrix} 1 & 2 & -1 \\ 2 & -2 & 2 \\ -1 & 2 & 1 \end{bmatrix} \]

a) Find the eigenvectors of eigenvalue 2. (this should be just Gaussian Elimination)

b) Compute \(\det(A - \lambda I) \) (a cubic polynomial in \(\lambda \)) by the expansion method (using Gaussian elimination may split into cases; don’t use it). A check on your work is that \((\lambda - 2)\) should be a factor of the polynomial (why? because 2 is a root).

c) Factorize \(\det(A - \lambda I) \) and determine all eigenvalues and for each eigenvalue, describe the associated set of eigenvectors.

4. Let \(A \) be an \(n \times n \) matrix with an eigenvector \(\mathbf{v} \) of eigenvalue \(\lambda \). Assume we can obtain an invertible matrix \(M \) which has \(\mathbf{v} \) as its first column. Compute the first column of \(B = M^{-1}AM \). Deducce that \(B \) has an eigenvalue \(\lambda \).

5. Assume that \(A = MBM^{-1} \). Show that \(\det(A - \lambda I) = \det(B - \lambda I) \). Product rule?

6. Assume \(A \) is a 3 \(\times \) 3 matrix, and \(M \) is an invertible matrix with \(A = MDM^{-1} \), where \(D \) is the diagonal matrix

\[D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix} \]

Show that \((A - 2I)(A - 3I)(A - 4I) = 0.\)

7. Let \(A = (a_{ij}) \) be a matrix with integral entries such that the diagonal entries are all odd \((a_{ii} \) is odd) and all off diagonal entries are even \((a_{ij} \) is even for \(i \neq j \)). Show that \(A \) has \(\det(A) \neq 0, \) i.e. \(A \) is invertible.