1. Let $A = \begin{bmatrix} x & 1 \\ 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 0 & 1 \\ x & y \end{bmatrix}$. Determine all x, y so that $AB = BA$.

2. Find a 2×2 matrix A, no entry of which is 0, with $A^2 = A$. Note that your first guesses $A = I$ or $A = 0$ have 0 entries.

3. Gavin has a sum of s dollars in t bills (not treasury bills!) The bills are either 3 or 5. Express the number x of 3 bills and the number y of 5 bills in terms of s and t.

4. Assume you are given a pair of matrices A, B which satisfy $AB = BA$. Show that if we set $C = A^2 + 2A$ and $D = B^3 + 5I$, then $CD = DC$. Generalize this, namely find a property so that for matrices C, D with that certain property, then $CD = DC$.

5. Let $R(\theta)$ denote the matrix of the transformation which rotates the plane by θ counterclockwise around the origin. Explain in terms of transformations why $R(\theta)R(\phi) = R(\theta + \phi)$. Show how you can use this to derive the formulas for $\cos(\theta + \phi), \sin(\theta + \phi)$ in terms of $\cos(\theta), \sin(\theta), \cos(\phi), \sin(\phi)$.

6. Find a matrix A with $A \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ and $A \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \end{bmatrix}$. (We can rephrase this as finding a matrix A with eigenvector $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ of eigenvalue 3 and eigenvector $\begin{bmatrix} 1 \\ 3 \end{bmatrix}$ of eigenvalue 2).

7. a) Assume A, B are 2×2 invertible matrices. Show that $(AB)^{-1} = B^{-1}A^{-1}$.
 b) Given $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ then define $A^T = \begin{bmatrix} a & c \\ b & d \end{bmatrix}$, where A^T is called the transpose of A. Show that $(AB)^T = B^TA^T$ for any 2×2 matrices A, B. Explain how to justify this by realizing that A^T corresponds interchanging the roles of rows and columns in A.

8. Define $\text{tr} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = a + d$ (read trace for ‘tr’).
 a) Using $A^* = (a + d)I - A$ verify $AA^* = (ad - bc)I$ and verify the Cayley-Hamilton Theorem (at least for 2×2 matrices):
 $A^2 - \text{tr}(A)A + \text{det}(A)I = 0$
 (i.e. A acts as a ‘root’ to the quadratic $\text{det}(A - \lambda I)$ when interpreted as a matrix polynomial).
 b) Determine conditions on $\text{tr}(A)$ and $\text{det}(A)$ to ensure that $A^2 = A$ but $A \neq I, O$. Hint: Consider the two cases $A \neq kI$ for any k and $A = kI$ for some k.
 c) Given a matrix $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ with $A^2 = A$ and $A \neq I, O$, determine formulas for c, d in terms of a, b.

9. Consider two nonzero vectors $\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}, \mathbf{y} = \begin{bmatrix} c \\ d \end{bmatrix}$. We would like to establish a simple condition on a, b, c, d that determines whether changing from direction \mathbf{x} to direction \mathbf{y} corresponds to turning left or right. One possible way is to note that there is a rotation matrix $R(\theta)$ so that $\mathbf{y} = R(\theta)\mathbf{x}$ and $0 \leq \theta < 2\pi$. Use our knowledge of rotation matrices to establish a simple condition on a, b, c, d so that the angle θ satisfies $0 < \theta < \pi$. You can even assume a, b, c, d are all positive and nonzero, if that assists you.