This Examination paper consists of 7 pages (including this one). Make sure you have all 7.

INSTRUCTIONS:
No memory aids allowed. No calculators allowed. No communication devices allowed.

MARKING:

<table>
<thead>
<tr>
<th>Q1</th>
<th>/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q2</td>
<td>/10</td>
</tr>
<tr>
<td>Q3</td>
<td>/10</td>
</tr>
<tr>
<td>Q4</td>
<td>/10</td>
</tr>
<tr>
<td>TOTAL</td>
<td>/40</td>
</tr>
</tbody>
</table>
Q1 [10 marks]

At 1:00 p.m. ship A is 25 km due north of ship B. If ship A is sailing west at a rate of 16 km/h and ship B is sailing south at 20 km/h, find the rate at which the distance between the two ships is changing at 1:30 p.m. (Be sure to draw a diagram.)
Q2 [10 marks]

A used Cesna 172 Skyhawk aircraft is purchased for $56,000. The buyer predicts it will decline continuously in value at a rate of 4% per year.

(a) Write down a function to model the value of the aircraft t years from now.

(b) What is the predicted value of the plane 5 years from now?

(c) In 5 years time, the buyer is forced to sell the plane for $30,000. What constant annual rate of depreciation would have the buyer’s $56,000 aircraft worth only $30,000 after 5 years?
Q3 [10 marks]

Suppose that Lindo Cafe. sells 400 half-kilogram bags of Colombian coffee per week when it is priced at $10 per 500 grams. For every $1 per bag increase in price, it sells 10 fewer bags of coffee. Recall that the price elasticity of demand is given by \(\epsilon(p) = \frac{p dq}{q dp} \).

(a) Find the demand equation for Lindo’s Colombian coffee. Use \(p \) for price and \(q \) for the demand.

(b) Compute \(\epsilon(p) \) for this demand function.
(c) If the price is $12 and increases by 4%, what is the percentage change in demand? (Hint: Use the price elasticity of demand to answer this question.) You may leave your answer in the simplest calculator-ready form you can find.

(d) Will the Lindo Cafe’s revenue increase or decrease as a result of the price change in part (c)? Explain your answer.
Q4 [10 marks]

For the function

\[f(x) = \frac{x^2 - 1}{x^2 - 4} \]

determine all of the following if they are present: (i) critical points (where \(f'(x) = 0 \) or \(f'(x) \) does not exist), local maxima and minima, intervals where \(f(x) \) is increasing or decreasing; (ii) inflection points and intervals where \(f(x) \) is concave upward or downward; (iii) asymptotes (horizontal, vertical). Sketch the graph of \(y = f(x) \), giving the \((x, y)\) coordinates for all of the points of interest above. **Please make your sketch big enough to see clearly all features of interest.**

You may use, without demonstrating it, the fact that \(f''(x) = \frac{6(3x^2 + 4)}{(x^2 - 4)^3} \).
(Question 4 continued)