Forbidden Configurations: Extensions to the Complete Object

R.P., Anstee ${ }^{1}$, N.A. Nikov ${ }^{2}$,
Mathematics Department
The University of British Columbia
Vancouver, B.C. Canada, V6T 1 Z2
anstee@math.ubc.ca niko.a.nikov@gmail.com

November 2, 2021

[^0]
The Extremal Problem

A $(0,1)$-matrix is simple if it has no repeated columns. $\|A\|$ will denote the number of columns of matrix A.

We say that a matrix F is a configuration of a matrix A if F is a row and column permutation of some submatrix A^{\prime} of A, and write $F \prec A$.

The Extremal Problem

A $(0,1)$-matrix is simple if it has no repeated columns. $\|A\|$ will denote the number of columns of matrix A.

We say that a matrix F is a configuration of a matrix A if F is a row and column permutation of some submatrix A^{\prime} of A, and write $F \prec A$.

Having fixed some family of matrices \mathcal{F}, called a forbidden family, we will define to be the set

$$
\operatorname{Avoid}(m, \mathcal{F})=\{A: A \text { is } m \text {-rowed simple and } F \nprec A \forall F \in \mathcal{F}\} .
$$

Consequently, we let

$$
\operatorname{forb}(m, \mathcal{F})=\max _{A \in \operatorname{Avoid}(m, \mathcal{F})}\|A\| .
$$

(When $\mathcal{F}=\{F\}$, we will write $\operatorname{Avoid}(m, F)$ and $\operatorname{forb}(m, F)$.)

The Extremal Problem

As with any extremal problem, we search for constructions and bounds. Constructions A avoiding a certain object give lower bounds whereas upper bounds on forb (m, \mathcal{F}) require new proofs.

Example Constructions which achieve the bound for the matrix on the right have the matrix on the left as a configuration.

$$
\operatorname{forb}\left(m,\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0
\end{array}\right]\right) \leq \text { forb }\left(m,\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & 1 & \cdots & 1 \\
0 & 0 & \cdots & 0 \\
0 & 0 & \cdots & 0
\end{array}\right]\right) .
$$

Multiple Copies of a Configuration

If F is a $(0,1)$-matrix, then $t \cdot F$ will denote the matrix

$$
[\overbrace{F F \cdots F}^{t \text { copies }}] .
$$

As intuition suggests, there exists some integer M so that, whenever $m \geq M$,

$$
\operatorname{forb}(m,(t+1) \cdot F)>\operatorname{forb}(m, t \cdot F)
$$

Multiple Copies of a Configuration

Let F be given where F is $k \times \ell$. We split this into the cases where $\ell=1$ and $\ell \geq 2$. The latter is easy:

Case 1: $\ell \geq 2$. Assume the contrary forb $(m,(t+1) \cdot F)=\operatorname{forb}(m, t \cdot F)$ and so take an $m \times n$ matrix $A \in \operatorname{Avoid}(m, t \cdot F)$ with

$$
n=\operatorname{forb}(m, t \cdot F)=\operatorname{forb}(m,(t+1) \cdot F)
$$

and some $m \times 1$ column α not in A. Considering $A^{\prime}=[A \mid \alpha]$, we have that $(t+1) \cdot F \prec A^{\prime}$ on some $((t+1) \ell)$-set of columns of A^{\prime} and since $\ell \geq 2$, we can take a $t \ell$-subset of these, not including α, on which $t \cdot F \prec A$, a contradiction.

Multiple Copies of a Configuration

Case 2: $\ell=1$ we introduce the notation $\mathbf{1}_{p} \mathbf{0}_{q}$ to denote columns of p s on top of $q 0$ s.

The following theorem of Keevash (2015) is useful for constructions:
Theorem Let p, λ be given. There exists some $A \in \operatorname{Avoid}\left(m,(\lambda+1) \cdot \mathbf{1}_{p}\right)$ whose column sums are all $p+1$ and $\|A\|=\frac{\lambda}{p+1}\binom{m}{p}$ for m, p, t satisfying $\binom{p+1-i}{p-i}$ divides $\binom{m-i}{p-i}$ for $i=1,2, \ldots, p-1$.
When $p>q$, a result of Anstee, Barekat, and Pellegrin (2019) provides exact bounds, for large enough m, that grow with t. From the exact bounds it immediately follows that

$$
\mid \text { forb } \left.\left(m, t \cdot \mathbf{1}_{p} \mathbf{0}_{q}\right)-\left(1+\frac{t-2}{p+1}\right) \frac{m^{p}}{p!} \right\rvert\, \leq c_{1} m^{p-1} .
$$

When $p=q$, no exact bound is known but similar arguments apply.

The bound on K_{k}

Let K_{k} be the $k \times 2^{k}$ matrix of all possible columns on k rows. The following, due to Sauer 72, Perles, and Shelah 72, and Vapnik and Chervonenkis 71, is a central result in forbidden configurations.

Theorem

$$
\text { forb }\left(m, K_{k}\right)=\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\cdots+\binom{m}{k-1} .
$$

First use Pascal's identities to arrange the above expansions as

$$
\begin{array}{r}
\binom{m-1}{0}+\binom{m-1}{1}+\binom{m-1}{2}+\cdots+\binom{m-1}{k-1} \\
+\binom{m-1}{0}+\binom{m-1}{1}+\cdots+\binom{m-1}{k-2}
\end{array}
$$

yielding forb $\left(m-1, K_{k}\right)+\operatorname{forb}\left(m-1, K_{k-1}\right)=\operatorname{forb}\left(m, K_{k}\right)$.

The bound on K_{k}

Let us prove the bound by illustrating the method of standard induction.
Given a matrix A on m rows avoiding K_{k}, we can permute the rows and columns of A as

$$
\text { row } r \rightarrow\left[\begin{array}{cccccccccccc}
1 & 1 & \ldots & 1 & 1 & \cdots & \cdots & 0 & \ldots & 0 & 0 & \ldots
\end{array}\right)
$$

where C_{r} are those columns which would be repeated upon the deletion of row r. The matrices C_{r} and $\left[B_{r} C_{r} D_{r}\right.$] are $(m-1)$-rowed simple. [$B_{r} C_{r} D_{r}$] has no K_{k} but we can say more about C_{r} : since C_{r} appears under 1 s and $0 \mathrm{~s}, C_{r}$ has no K_{k-1}. Therefore, with

$$
\|A\|=\left\|\left[\begin{array}{lll}
B_{r} & C_{r} & D_{r}
\end{array}\right]\right\|+\left\|C_{r}\right\|,
$$

$$
\|A\| \leq \operatorname{forb}\left(m-1, K_{k}\right)+\operatorname{forb}\left(m-1, K_{k-1}\right)=\operatorname{forb}\left(m, K_{k}\right),
$$

precisely the inductive result we require.

Our main question is for which B is it true that

$$
\operatorname{forb}\left(m,\left[K_{4} \mid B\right]\right)=\operatorname{forb}\left(m, K_{4}\right)
$$

(at least for large m)? We make progress.

The bound on K_{k}

Matrices A on m rows with $\|A\|=\operatorname{forb}\left(m, K_{k}\right)$ vary a great deal. They are not canonical.

The first 5×16 matrix has no K_{3} because it has no submatrix $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}$. The second is more random.

$$
\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

The bound on K_{k}

Matrices A on m rows with $\|A\|=\operatorname{forb}\left(m, K_{k}\right)$ vary a great deal. They are not canonical.

The first 5×16 matrix has no K_{3} because it has no submatrix $\left[\begin{array}{lll}1 & 0 & 1\end{array}\right]^{T}$. The second is more random.

$$
\begin{aligned}
& {\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]} \\
& {\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]
$$

What is missing?

$$
\begin{array}{cccccccccc}
\text { no } & \text { no } \\
1 & 1 & 1 & 1 & 1 & 1 & & & & \\
0 & 0 & 0 & & & & 1 & 1 & 1 & \\
1 & & & 1 & 1 & & 1 & 1 & & 1 \\
& 1 & & 1 & & 0 & 1 & & 0 & 0 \\
& & 1 & & 1 & 1 & & 1 & 1 & 1
\end{array}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right) .
\end{aligned}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
\left.K_{4}=\begin{array}{|lllllllllllllll}
1 \\
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)
\end{aligned}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
K_{4}=\left[\begin{array}{l|lllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right) .
\end{aligned}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
K_{4}=\left[\begin{array}{lllll|llllll|lllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right) .
\end{aligned}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
K_{4}=\left[\begin{array}{lllllllllll|lllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right) .
\end{aligned}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
K_{4}=\left[\begin{array}{lllllllllllllll|l|}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right) .
\end{aligned}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
\left.K_{4}=\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)
\end{aligned}
$$

Critical Substructures for K_{4}

A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ so that forb $\left(m, F^{\prime}\right)=\operatorname{forb}(m, F)$.

$$
K_{4}=\left[\begin{array}{llllllllllllll|ll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$.
Note that

$$
\begin{aligned}
\operatorname{forb}\left(m, \mathbf{1}_{4}\right) & =\operatorname{forb}\left(m, K_{4}^{3}\right)=\operatorname{forb}\left(m, K_{4}^{2}\right)=\operatorname{forb}\left(m, K_{4}^{1}\right) \\
& =\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)
\end{aligned}
$$

Motivations

Can we add columns to K_{4} and preserve its bound? The added columns must have column sum 2.

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0
\end{array}\right]
$$

The 3×3 block $3 \cdot \mathbf{1}_{3}$ has a bound of $\binom{m}{0}+\binom{m}{1}+\binom{m}{2}+\frac{5}{4}\binom{m}{3}$, bigger than that of K_{4}.

Results in Anstee, Meehan (2011) state that

$$
\operatorname{forb}\left(m,\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]\right)=\operatorname{forb}\left(m, K_{4}\right)
$$

for m large enough (actually $m \geq 5$). Generalizations were hindered in searching for base cases m in the standard induction. Using several stability lemmas, we can overcome these difficulties.

Product Construction

If F is $k_{1} \times \ell_{1}$ and G is $k_{2} \times \ell_{2}$, we will denote by $F \times G$ the
$\left(k_{1}+k_{2}\right) \times \ell_{1} \ell_{2}$ matrix consisting of every column of F appearing over every column of G.

In this way,

$$
K_{k}=\overbrace{\left[\begin{array}{ll}
1 & 0
\end{array}\right] \times\left[\begin{array}{ll}
1 & 0
\end{array}\right] \times \cdots \times\left[\begin{array}{ll}
10
\end{array}\right]}^{k \text { times }} .
$$

Main Theorems

Let

$$
K_{2}^{T}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 0 \\
0 & 1
\end{array}\right] \quad \text { and } \quad F_{1}=\left[\begin{array}{llll}
1 & 1 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem Assume $k \geq 4$ and $t \geq 1$. There exists an m_{k} so that, for $m>m_{k}$, we have

$$
\operatorname{forb}\left(m,\left[K_{k} \mid t \cdot\left(K_{2}^{T} \times K_{k-4}\right)\right]=\operatorname{forb}\left(m, K_{k}\right) .\right.
$$

The neat fact due to Gronau (1980) that forb $\left(m, 2 \cdot K_{k}\right)=\operatorname{forb}\left(m, K_{k+1}\right)$ is instrumental in proving:

Theorem Assume $k \geq 3$ and $t \geq 1$. There exists an m_{k} so that, for $m>m_{k}$, we have

$$
\operatorname{forb}\left(m,\left[2 \cdot K_{k} \mid t \cdot\left(F_{1} \times K_{k-3}\right)\right]\right)=\operatorname{forb}\left(m, 2 \cdot K_{k}\right) .
$$

Proof of Theorem

$$
F_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad F_{3}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad F_{4}=\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1
\end{array}\right] .
$$

Let $\mathcal{F}=\left\{\left[K_{3} \mid t \cdot F_{2}\right],\left[K_{3} \mid t \cdot F_{3}\right],\left[K_{3} \mid t \cdot F_{4}\right]\right\}$

Proof of Theorem (outline)

To understand the somewhat complicated induction, consider the proof of Claim 2(4) that forb $\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)=$ forb $\left(m, K_{4}\right)$ for m large. We use Claim 1(4) and Claim 3(3) as well as some analysis of our standard induction.

Proof of Theorem (outline)

To understand the somewhat complicated induction, consider the proof of Claim 2(4) that forb $\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)=$ forb $\left(m, K_{4}\right)$ for m large. We use Claim 1(4) and Claim 3(3) as well as some analysis of our standard induction.
Let $A \in \operatorname{Avoid}\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)$. If $K_{4} \nprec A$, then $\|A\| \leq \operatorname{forb}\left(m, K_{4}\right)$ as desired. So assume for some set of rows $S,\left.K_{4} \prec A\right|_{s}$. Then $\left.t \cdot K_{2}^{T} \nprec A\right|_{S}$ (actually $\left.(t+1) \cdot K_{2}^{T} \nprec A\right|_{S}$ but who's counting). Using standard induction we deduce that $t \cdot F_{1},\left.t \cdot F_{2, t} \cdot F_{3} \nprec C_{r}\right|_{S \backslash r}$.

Proof of Theorem (outline)

To understand the somewhat complicated induction, consider the proof of Claim 2(4) that forb $\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)=$ forb $\left(m, K_{4}\right)$ for m large. We use Claim 1(4) and Claim 3(3) as well as some analysis of our standard induction.
Let $A \in \operatorname{Avoid}\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)$. If $K_{4} \nprec A$, then $\|A\| \leq \operatorname{forb}\left(m, K_{4}\right)$ as desired. So assume for some set of rows $S,\left.K_{4} \prec A\right|_{S}$. Then $\left.t \cdot K_{2}^{T} \nprec A\right|_{S}$ (actually $\left.(t+1) \cdot K_{2}^{T} \nprec A\right|_{S}$ but who's counting). Using standard induction we deduce that $t \cdot F_{1}, t \cdot F_{2},\left.t \cdot F_{3} \nprec C_{r}\right|_{S \backslash r}$. By Claim 3(3), we have $\left\|\left.C_{r}\right|_{S \backslash r}\right\| \leq$ forb $\left(m-1, K_{3}\right)-m+4 t$.

Proof of Theorem (outline)

To understand the somewhat complicated induction, consider the proof of Claim 2(4) that forb $\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)=$ forb $\left(m, K_{4}\right)$ for m large. We use Claim 1(4) and Claim 3(3) as well as some analysis of our standard induction.
Let $A \in \operatorname{Avoid}\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)$. If $K_{4} \nprec A$, then $\|A\| \leq \operatorname{forb}\left(m, K_{4}\right)$ as desired. So assume for some set of rows $S,\left.K_{4} \prec A\right|_{S}$. Then $\left.t \cdot K_{2}^{T} \nprec A\right|_{S}$ (actually $\left.(t+1) \cdot K_{2}^{T} \nprec A\right|_{S}$ but who's counting). Using standard induction we deduce that $t \cdot F_{1}, t \cdot F_{2},\left.t \cdot F_{3} \nprec C_{r}\right|_{S \backslash r}$. By Claim 3(3), we have $\left\|\left.C_{r}\right|_{S \backslash r}\right\| \leq$ forb $\left(m-1, K_{3}\right)-m+4 t$. Also by standard induction, $\left[B_{r} C_{r} D_{r}\right] \in \operatorname{Avoid}\left(m-1,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)$. Apply Claim 1(4) to obtain $\left\|\left[B_{r} C_{r} D_{r}\right]\right\| \leq \operatorname{forb}\left(m-1, K_{4}\right)+c_{4}$.

Proof of Theorem (outline)

To understand the somewhat complicated induction, consider the proof of Claim 2(4) that forb $\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)=$ forb $\left(m, K_{4}\right)$ for m large. We use Claim 1(4) and Claim 3(3) as well as some analysis of our standard induction.
Let $A \in \operatorname{Avoid}\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)$. If $K_{4} \nprec A$, then $\|A\| \leq \operatorname{forb}\left(m, K_{4}\right)$ as desired. So assume for some set of rows $S,\left.K_{4} \prec A\right|_{S}$. Then $\left.t \cdot K_{2}^{T} \nprec A\right|_{S}$ (actually $\left.(t+1) \cdot K_{2}^{T} \nprec A\right|_{S}$ but who's counting). Using standard induction we deduce that $t \cdot F_{1}, t \cdot F_{2},\left.t \cdot F_{3} \nprec C_{r}\right|_{S \backslash r}$. By Claim 3(3), we have $\left\|\left.C_{r}\right|_{S \backslash r}\right\| \leq$ forb $\left(m-1, K_{3}\right)-m+4 t$. Also by standard induction, $\left[B_{r} C_{r} D_{r}\right] \in \operatorname{Avoid}\left(m-1,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)$. Apply Claim 1(4) to obtain $\left\|\left[B_{r} C_{r} D_{r}\right]\right\| \leq \operatorname{forb}\left(m-1, K_{4}\right)+c_{4}$.
Using the recursion forb $\left(m-1, K_{4}\right)+\operatorname{forb}\left(m-1, K_{3}\right)=\operatorname{forb}\left(m, K_{4}\right)$ we obtain the result assuming $m>c_{4}+4 t$.

Problems

We always have many problems.

Problems

We always have many problems.
Can we improve our result for K_{4} (i.e. add more columns and get the same exact bound) or are the current results best possible (some constructions would be required)?

The following theorem indicates that we will certainly see a change in the bound of K_{4} if we were to extend to $\left[K_{4} \mid K_{4}^{2}\right]$.

Theorem (Anstee, Fleming 2010) Let k be given and let B be an $k \times(k+1)$ matrix with one column of each column sum. Then forb $\left(m,\left[K_{k} \mid t \cdot\left(K_{k} \backslash B\right)\right]\right)$ is $\Theta\left(m^{k-1}\right)$. Also if F is a k-rowed configuration and $K_{k} \prec F$, then forb (m, F) is $\Theta\left(m^{k-1}\right)$ if and only if there is a t and $k \times(k+1)$ matrix B with one column of each column sum where $F \prec\left[K_{k} \mid t \cdot\left(K_{k} \backslash B\right)\right]$.

Problems

Let

$$
F_{5}=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad F_{6}=\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
0 & 1 \\
0 & 1
\end{array}\right], \quad F_{7}=\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1
\end{array}\right]
$$

Problem Show that

$$
\text { forb }\left(m,\left[K_{4} \mid F_{5}\right]\right)>\operatorname{forb}\left(m, K_{4}\right) \quad \text { and } \quad \text { forb }\left(m,\left[K_{4} \mid F_{6}\right]\right)>\operatorname{forb}\left(m, K_{4}\right)
$$

Constructions are hard to come by. It is possible that even forb $\left(m,\left[K_{4} \mid t \cdot F_{7}\right]\right)=$ forb $\left(m, K_{4}\right)$. We need some new constructions!

Thank You

Comox Glacier，Queneesh

[^0]: ${ }^{1}$ Research supported in part by NSERC
 ${ }^{2}$ Research supported in part by NSERC USRA

