Forbidden Configurations

Steven Karp
(USRA with R.P. Anstee, UBC)

CUMC
July 9th, 2008
What is an Extremal Problem?
Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other? Answer: 8
- At most how many 2×1 dominoes can we place on a chessboard which has two opposite corners removed? Answer: 30
- At most how many edges can a simple graph with p vertices have, if it has no triangles? Answer: $\lfloor \frac{p^2}{4} \rfloor$ (Turán's Theorem)
What is an Extremal Problem?
Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?

Answer: 8

- At most how many 2×1 dominoes can we place on a chessboard which has two opposite corners removed?

Answer: 30

- At most how many edges can a simple graph with p vertices have, if it has no triangles?

Answer: $\lfloor \frac{p^2}{4} \rfloor$ (Turán's Theorem)
What is an Extremal Problem?
Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?
 Answer: 8
What is an Extremal Problem?
Here are some examples of extremal problems:

- At most how many queens can we place on a chessboard so that no two attack each other?
 Answer: 8

- At most how many 2×1 dominoes can we place on a chessboard which has two opposite corners removed?
What is an Extremal Problem?
Here are some examples of extremal problems:

- **At most how many** queens can we place on a chessboard so that no two attack each other?

 Answer: 8

- **At most how many** 2×1 dominoes can we place on a chessboard which has two opposite corners removed?

 Answer: 30
What is an Extremal Problem?
Here are some examples of extremal problems:

- **At most how many** queens can we place on a chessboard so that no two attack each other?

 Answer: 8

- **At most how many** 2×1 dominoes can we place on a chessboard which has two opposite corners removed?

 Answer: 30

- **At most how many** edges can a simple graph with p vertices have, if it has no triangles?
What is an Extremal Problem?
Here are some examples of extremal problems:

- **At most how many** queens can we place on a chessboard so that no two attack each other?

 Answer: 8

- **At most how many** 2×1 dominoes can we place on a chessboard which has two opposite corners removed?

 Answer: 30

- **At most how many** edges can a simple graph with p vertices have, if it has no triangles?

 Answer: $\left\lfloor \frac{p^2}{4} \right\rfloor$ (Turán’s Theorem)
Definition. A simple matrix is a \(\{0,1\}\)-matrix with no repeated columns.
Definition. A simple matrix is a \(\{0,1\} \)-matrix with no repeated columns.

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 & 1 & 1
\end{bmatrix}
\]
Definition. A simple matrix is a \(\{0,1\} \)-matrix with no repeated columns.

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

e.g.

We can think of an \(m \)-rowed simple matrix as the incidence matrix of a collection of subsets of \(\{1, 2, \ldots, m\} \).
Definition. A simple matrix is a \(\{0,1\} \)-matrix with no repeated columns.

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

\(\emptyset \quad \{1\} \quad \{1,3,4\} \quad \{3,4\} \quad \{2,4\} \quad \{2,3,4\} \)

We can think of an \(m \)-rowed simple matrix as the incidence matrix of a collection of subsets of \(\{1,2,\ldots,m\} \).
Definition. A simple matrix is a \{0,1\}-matrix with no repeated columns.

\[
\begin{bmatrix}
0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

\[\emptyset \quad \{1\} \quad \{1,3,4\} \quad \{3,4\} \quad \{2,4\} \quad \{2,3,4\}\]

We can think of an \(m\)-rowed simple matrix as the incidence matrix of a collection of subsets of \(\{1,2,\ldots,m\}\).

An \(m\)-rowed simple matrix has at most \(2^m\) columns.
Definition. A simple matrix is a \(\{0,1\}\)-matrix with no repeated columns.

Definition. Suppose that \(F\) is a \(\{0,1\}\)-matrix (not necessarily simple). A simple matrix \(A\) has the configuration \(F\) if \(A\) has a submatrix which is a row and column permutation of \(F\).
Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

e.g. $F = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$,
Definition. A simple matrix is a \(\{0,1\}\)-matrix with no repeated columns.

Definition. Suppose that \(F\) is a \(\{0,1\}\)-matrix (not necessarily simple). A simple matrix \(A\) has the configuration \(F\) if \(A\) has a submatrix which is a row and column permutation of \(F\).

e.g. \(F = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}\)
Definition. A simple matrix is a \(\{0,1\}\)-matrix with no repeated columns.

Definition. Suppose that \(F\) is a \(\{0,1\}\)-matrix (not necessarily simple). A simple matrix \(A\) has the configuration \(F\) if \(A\) has a submatrix which is a row and column permutation of \(F\).

\[F = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}\]
Definition. A simple matrix is a \(\{0,1\}\)-matrix with no repeated columns.

Definition. Suppose that \(F\) is a \(\{0,1\}\)-matrix (not necessarily simple). A simple matrix \(A\) has the configuration \(F\) if \(A\) has a submatrix which is a row and column permutation of \(F\).

\[
e.g. \quad F = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}, \quad A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}
\]
Definition. A simple matrix is a $\{0,1\}$-matrix with no repeated columns.

Definition. Suppose that F is a $\{0,1\}$-matrix (not necessarily simple). A simple matrix A has the configuration F if A has a submatrix which is a row and column permutation of F.

e.g. $F = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $A = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}$

Extremal Problem: If a simple matrix A has m rows and does not have the configuration F, at most how many columns can A have?

Answer: $\text{forb}(m, F)$
Definition. A simple matrix is a \(\{0,1\} \)-matrix with no repeated columns.

Definition. Suppose that \(F \) is a \(\{0,1\} \)-matrix (not necessarily simple). A simple matrix \(A \) has the configuration \(F \) if \(A \) has a submatrix which is a row and column permutation of \(F \).

Definition. Suppose that \(F \) is a \(\{0,1\} \)-matrix, and \(m \) a positive integer. Then \(\text{forb}(m, F) \) is the greatest number of columns that an \(m \)-rowed simple matrix with no configuration \(F \) can have.
Definition. A simple matrix is a \(\{0,1\}\)-matrix with no repeated columns.

Definition. Suppose that \(F\) is a \(\{0,1\}\)-matrix (not necessarily simple). A simple matrix \(A\) has the configuration \(F\) if \(A\) has a submatrix which is a row and column permutation of \(F\).

Definition. Suppose that \(F\) is a \(\{0,1\}\)-matrix, and \(m\) a positive integer. Then \(\text{forb}(m, F)\) is the greatest number of columns that an \(m\)-rowed simple matrix with no configuration \(F\) can have.

Equivalently, \(\text{forb}(m, F)\) is the least integer such that every simple matrix with \(m\) rows and more than \(\text{forb}(m, F)\) columns has the configuration \(F\).
Examples

\[\text{forb}(m, [1 \ 0]) = 1. \]
Examples

\[
\text{forb}(m, [1 \ 0]) = 1.
\]

\[
\text{forb}(m, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}) = 2m + 2.
\]
Examples

\[\text{forb}(m, \begin{bmatrix} 1 & 0 \end{bmatrix}) = 1. \]

\[\text{forb}(m, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}) = 2m + 2. \]

\[\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) = m + 1. \]
Some New Results for 2-Columnned F

Others proved previously that

$$\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) = m + 1,$$

What happens if we keep adding $\begin{bmatrix} 1 & 0 \end{bmatrix}$ on top?
Some New Results for 2-Columned F

Others proved previously that

$$\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) = m + 1,$$

$$\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \left\lceil \frac{3}{2}m \right\rceil + 1,$$

∀ \text{ } m \geq 3.
Some New Results for 2-Columned F

Others proved previously that

\[\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) = m + 1, \]

\[\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \left\lfloor \frac{3}{2} m \right\rfloor + 1, \]

\[\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \binom{m}{2} + m + 2 \quad \forall m \geq 3. \]
Some New Results for 2-Columned F

Others proved previously that

\[
\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}) = m + 1,
\]

\[
\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \left\lfloor \frac{3}{2} m \right\rfloor + 1,
\]

\[
\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \binom{m}{2} + m + 2 \quad \forall m \geq 3.
\]

What happens if we keep adding \([1 \ 0]\) on top?
Theorem. For $m \geq 3$,

$$\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \binom{m}{2} + m + 2.$$

A construction: the m-rowed matrix with all columns of sum $0, 1, 2$ and m.
Theorem. For $m \geq 4$,

$$\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \binom{m}{3} + \binom{m}{2} + m + 2.$$

A construction: the m-rowed matrix with all columns of sum $0, 1, 2, 3$ and m.
Theorem. For $m \geq 5$,

$$\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \binom{m}{4} + \binom{m}{3} + \binom{m}{2} + m + 2.$$

A construction: the m-rowed matrix with all columns of sum

$0, 1, 2, 3, 4$ and m.

Steven Karp (USRA with R.P. Anstee, UBC)
Theorem. For \(m \geq k - 1 \geq 3 \),

\[
\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the \(m \)-rowed matrix with all columns of sum

\(0, 1, 2, \ldots, k - 2 \) and \(m \).
Theorem. For $m \geq k - 1 \geq 3$,\

$$\text{forb}(m, \begin{bmatrix} 1 \\ 1 \\ 1 \\ \vdots \\ 1 \\ 1 \\ 1 \\ 0 \end{bmatrix}^k) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.$$\

A construction: the m-rowed matrix with all columns of sum $0, 1, 2, \ldots, k - 2$ and m.
I asked, “What if I flip some digits in the second column?”

Theorem. For $m \geq k - 1 \geq 3$, $m \geq k - 2 \geq 3$,

$$\text{forb}(m, \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.$$

A construction: the m-rowed matrix with all columns of sum $0, 1, 2, \ldots, k - 2$ and m.
The bound and the construction remains the same!

New! Theorem. For $m \geq k - 1 \geq 3$,

\[
\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) \{ k \}) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the m-rowed matrix with all columns of sum

$0, 1, 2, \ldots, k - 2$ and m.
The bound and the construction remains the same!

New! Theorem. For $m \geq k - 1 \geq 3$,

\[
\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}^T, k) = \binom{m}{k - 2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the m-rowed matrix with all columns of sum $0, 1, 2, \ldots, k - 2$ and m.
The bound and the construction remains the same!

New! Theorem. For $m \geq k - 1 \geq 3$,

\[
\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}^T, k) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the m-rowed matrix with all columns of sum $0, 1, 2, \ldots, k - 2$ and m.

Steven Karp (USRA with R.P. Anstee, UBC)
If both columns have $k - 1$ ones, then strange things happen.

For $m \geq k - 1 \geq 3$,

$$\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}) = \text{KABOOM}$$
If both columns have $k - 1$ ones, then strange things happen.

For $m \geq k - 1 \geq 3$,

$$\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, k) = \text{KABOOM}$$

Finding a good construction becomes a difficult Design Theory problem.
What if we flip the 1 at the bottom of the second column to a 0?

For $m \geq k - 1 \geq 3$,

$$\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} \cup k) = \text{KABOOM}.$$
We get the same result as before.

New! Theorem. For $m \geq k - 1 \geq 3$,

\[
\text{forb}(m, \begin{bmatrix}
1 & 1 \\
1 & 1 \\
1 & 1 \\
\vdots & \vdots \\
1 & 1 \\
1 & 0 \\
0 & 0
\end{bmatrix} \begin{bmatrix} k \end{bmatrix}) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the m-rowed matrix with all columns of sum $0, 1, 2, \ldots, k - 2$ and m.
We get the same result as before.

New! Theorem. For \(m \geq k - 1 \geq 3 \),

\[
\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ \vdots & \vdots \\ 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}) \begin{pmatrix} k \end{pmatrix}) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the \(m \)-rowed matrix with all columns of sum

\(0, 1, 2, \ldots, k - 2 \) and \(m \).
We get the same result as before.

New! Theorem. For \(m \geq k - 1 \geq 3 \),

\[
\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the \(m \)-rowed matrix with all columns of sum 0, 1, 2, \ldots, \(k - 2 \) and \(m \).
We get the same result as before.

New! Theorem. For $m \geq k - 1 \geq 3$,

\[
\text{forb}(m, \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ 1 & 0 \\ \vdots & \vdots \\ 0 & 0 \end{bmatrix} k) = \binom{m}{k-2} + \cdots + \binom{m}{2} + m + 2.
\]

A construction: the m-rowed matrix with all columns of sum $0, 1, 2, \ldots, k - 2$ and m.
Sketch of Induction Proof:
For a given F, let A be a simple $m \times \text{forb}(m, F)$ matrix which does not have the configuration F.

We permute the columns of A so that it looks like
\[
\begin{bmatrix}
0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 \\
\end{bmatrix}
\]
where D is the matrix of columns repeated under the first row. Then C, D, E concatenated together is simple and $(m - 1)$-rowed, and does not have the configuration F.

\[\#\text{col's}(A) = \#\text{col's}(C, D, E) + \#\text{col's}(D)\]
\[\text{forb}(m, F) \leq \text{forb}(m - 1, F) + \#\text{col's}(D)\]

If we can get a good upper bound on $\#\text{col's}(D)$, then we can prove an upper bound on $\text{forb}(m, F)$ by induction.
Sketch of Induction Proof:
For a given F, let A be a simple $m \times \text{forb}(m, F)$ matrix which does not have the configuration F.

We permute the columns of A so that it looks like

$$
\begin{bmatrix}
0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & 1 \\
C & D & D & E
\end{bmatrix},
$$

where D is the matrix of columns repeated under the first row.
Sketch of Induction Proof:
For a given F, let A be a simple $m \times \text{forb}(m, F)$ matrix which does not have the configuration F.

We permute the columns of A so that it looks like

$$
\begin{bmatrix}
0 & 0 & \cdots & 0 & 0 & 1 & 1 & \cdots & 1 & 1 \\
C & D & D & E
\end{bmatrix},
$$

where D is the matrix of columns repeated under the first row.

Then C, D, E concatenated together is simple and $(m - 1)$-rowed, and does not have the configuration F.

$$
\therefore \text{col}'s(A) = \text{col}'s(C, D, E) + \text{col}'s(D) \leq \text{forb}(m, F) + \text{col}'s(D)
$$

If we can get a good upper bound on $\text{col}'s(D)$, then we can prove an upper bound on $\text{forb}(m, F)$ by induction.
Sketch of Induction Proof:
For a given F, let A be a simple $m \times \text{forb}(m, F)$ matrix which does not have the configuration F.

We permute the columns of A so that it looks like

$$
\begin{bmatrix}
0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & 1 \\
C & D & D & E
\end{bmatrix},
$$

where D is the matrix of columns repeated under the first row.

Then C, D, E concatenated together is simple and $(m - 1)$-rowed, and does not have the configuration F.

\[
\therefore \quad \#\text{col}'s(A) = \#\text{col}'s(C, D, E) + \#\text{col}'s(D)
\]

\[
\text{forb}(m, F) \leq \text{forb}(m - 1, F) + \#\text{col}'s(D)
\]
Sketch of Induction Proof:
For a given F, let A be a simple $m \times \text{forb}(m, F)$ matrix which does not have the configuration F.

We permute the columns of A so that it looks like

\[
\begin{bmatrix}
0 & 0 & \cdots & 0 & 1 & 1 & \cdots & 1 & 1 \\
C & D & & & D & E
\end{bmatrix},
\]

where D is the matrix of columns repeated under the first row.

Then C, D, E concatenated together is simple and $(m - 1)$-rowed, and does not have the configuration F.

\[
\therefore \quad \#\text{col's}(A) = \#\text{col's}(C, D, E) + \#\text{col's}(D)
\]

\[
\text{forb}(m, F) \leq \text{forb}(m - 1, F) + \#\text{col's}(D)
\]

If we can get a good upper bound on $\#\text{col's}(D)$, then we can prove an upper bound on $\text{forb}(m, F)$ by induction.
Thank You!

Thanks for your attention!