Forbidden Configurations
 A shattered history

Richard Anstee
UBC Vancouver

UBC Mar 2,2022

I have had the good fortune of working with a number of coauthors in this area: Farzin Barekat, Jeffrey Dawson, Kim Dinh, Laura Dunwoody, Ron Ferguson, Balin Fleming, Zoltan Füredi, Jerry Griggs, Nima Kamoosi, Steven Karp, Peter Keevash, Christina Koch, Linyuan (Lincoln) Lu, Connor Meehan, U.S.R. Murty, Niko Nikov, Zachary Pellegrin, Miguel Raggi, Lajos Ronyai, Santiago Salazar, Attila Sali, Cindy Tan.

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.

Definition We say that a matrix A is simple if it is a $(0,1)$-matrix with no repeated columns.
i.e. if A is m-rowed then A is the incidence matrix of some family \mathcal{A} of subsets of $[m]=\{1,2, \ldots, m\}$.

$$
\begin{gathered}
A=\left[\begin{array}{lll|l|l}
0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 1
\end{array}\right] \\
\mathcal{A}=\{\emptyset,\{2\},\{3\},\{1,3\},\{1,2,3\}\}
\end{gathered}
$$

Definition of a Configuration

Definition Given a matrix F, we say that A has F as a configuration written $F \prec A$ if there is a submatrix of A which is a row and column permutation of F.

$$
F=\left[\begin{array}{llll}
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1
\end{array}\right] \prec\left[\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right]=A
$$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A. Avoid $(m, F)=\{A: A$ is m-rowed simple, $F \nprec A\}$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A. Avoid $(m, F)=\{A: A$ is m-rowed simple, $F \nprec A\}$ forb $(m, F)=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, F)\}$

Our Extremal Problem

Definition We define $\|A\|$ to be the number of columns in A.
Avoid $(m, F)=\{A: A$ is m-rowed simple, $F \nprec A\}$
forb $(m, F)=\max _{A}\{\|A\|: A \in \operatorname{Avoid}(m, F)\}$

$$
\text { forb }\left(m,\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\right)=m+1
$$

Definition Let K_{k} denote the $k \times 2^{k}$ simple matrix of all possible columns on k rows.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\operatorname{forb}\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}=\Theta\left(m^{k-1}\right)
$$

We say a set of rows S is shattered by A if $\left.K_{|S|} \prec A\right|_{S}$. Definition $V C$-dimension $(A)=\max \left\{k: K_{k} \prec A\right\}$

We say a set of rows S is shattered by A if $\left.K_{|S|} \prec A\right|_{S}$. Definition $V C$-dimension $(A)=\max \left\{k: K_{k} \prec A\right\}$

VC-dimension appears in many results but most remarkably (for me) in machine learning.

Let $\operatorname{sh}(A)=\{S \subseteq[m]: A$ shatters $S\}$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

Let $\operatorname{sh}(A)=\{S \subseteq[m]: A$ shatters $S\}$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

Let $\operatorname{sh}(A)=\{S \subseteq[m]: A$ shatters $S\}$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
\hline 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

e.g.

$$
\begin{gathered}
A=\left[\begin{array}{cccccc}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\}
\end{gathered}
$$

Let $\operatorname{sh}(A)=\{S \subseteq[m]: A$ shatters $S\}$

e.g.

$$
\begin{aligned}
& A=\left[\begin{array}{llllll}
0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{sh}(A)=\{\emptyset,\{1\},\{2\},\{3\},\{4\},\{2,3\},\{2,4\}\} \\
& \text { So }|\operatorname{sh}(A)|=7 \geq 6=\|A\|
\end{aligned}
$$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots & 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$\|A\|=\left\|A_{0}\right\|+\left\|A_{1}\right\|$.

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots & 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$\|A\|=\left\|A_{0}\right\|+\left\|A_{1}\right\|$.
By induction $\left|\operatorname{sh}\left(A_{0}\right)\right| \geq\left\|A_{0}\right\|$ and $\left|\operatorname{sh}\left(A_{1}\right)\right| \geq\left\|A_{1}\right\|$.

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots & 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$\|A\|=\left\|A_{0}\right\|+\left\|A_{1}\right\|$.
By induction $\left|s h\left(A_{0}\right)\right| \geq\left\|A_{0}\right\|$ and $\left|\operatorname{sh}\left(A_{1}\right)\right| \geq\left\|A_{1}\right\|$.
$\left|\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right|=\left|\operatorname{sh}\left(A_{0}\right)\right|+\left|\operatorname{sh}\left(A_{1}\right)\right|-\left|\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right|$

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots & 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$\|A\|=\left\|A_{0}\right\|+\left\|A_{1}\right\|$.
By induction $\left|\operatorname{sh}\left(A_{0}\right)\right| \geq\left\|A_{0}\right\|$ and $\left|\operatorname{sh}\left(A_{1}\right)\right| \geq\left\|A_{1}\right\|$.
$\left|\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right|=\left|\operatorname{sh}\left(A_{0}\right)\right|+\left|\operatorname{sh}\left(A_{1}\right)\right|-\left|\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right|$
If $S \in \operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)$, then $1 \cup S \in \operatorname{sh}(A)$.

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots & 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$\|A\|=\left\|A_{0}\right\|+\left\|A_{1}\right\|$.
By induction $\left|\operatorname{sh}\left(A_{0}\right)\right| \geq\left\|A_{0}\right\|$ and $\left|\operatorname{sh}\left(A_{1}\right)\right| \geq\left\|A_{1}\right\|$.
$\left|\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right|=\left|\operatorname{sh}\left(A_{0}\right)\right|+\left|\operatorname{sh}\left(A_{1}\right)\right|-\left|\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right|$
If $S \in \operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)$, then $1 \cup S \in \operatorname{sh}(A)$.
So $\left(\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right) \cup\left(1+\left(\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right)\right) \subseteq \operatorname{sh}(A)$.

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots & 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$\|A\|=\left\|A_{0}\right\|+\left\|A_{1}\right\|$.
By induction $\left|\operatorname{sh}\left(A_{0}\right)\right| \geq\left\|A_{0}\right\|$ and $\left|\operatorname{sh}\left(A_{1}\right)\right| \geq\left\|A_{1}\right\|$.
$\left|\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right|=\left|\operatorname{sh}\left(A_{0}\right)\right|+\left|\operatorname{sh}\left(A_{1}\right)\right|-\left|\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right|$
If $S \in \operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)$, then $1 \cup S \in \operatorname{sh}(A)$.
So $\left(\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right) \cup\left(1+\left(\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right)\right) \subseteq \operatorname{sh}(A)$.
$|\operatorname{sh}(A)| \geq\left|\operatorname{sh}\left(A_{0}\right)\right|+\left|\operatorname{sh}\left(A_{1}\right)\right|$.

$$
\text { Let } \operatorname{sh}(A)=\{S \subseteq[m]: A \text { shatters } S\}
$$

Theorem (Pajor 85) $\quad|\operatorname{sh}(A)| \geq\|A\|$.
Proof: Decompose A as follows:

$$
A=\left[\begin{array}{ccc}
00 \cdots & 11 \cdots & 1 \\
A_{0} & A_{1}
\end{array}\right]
$$

$\|A\|=\left\|A_{0}\right\|+\left\|A_{1}\right\|$.
By induction $\left|\operatorname{sh}\left(A_{0}\right)\right| \geq\left\|A_{0}\right\|$ and $\left|\operatorname{sh}\left(A_{1}\right)\right| \geq\left\|A_{1}\right\|$.
$\left|\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right|=\left|\operatorname{sh}\left(A_{0}\right)\right|+\left|\operatorname{sh}\left(A_{1}\right)\right|-\left|\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right|$
If $S \in \operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)$, then $1 \cup S \in \operatorname{sh}(A)$.
So $\left(\operatorname{sh}\left(A_{0}\right) \cup \operatorname{sh}\left(A_{1}\right)\right) \cup\left(1+\left(\operatorname{sh}\left(A_{0}\right) \cap \operatorname{sh}\left(A_{1}\right)\right)\right) \subseteq \operatorname{sh}(A)$.
$|\operatorname{sh}(A)| \geq\left|\operatorname{sh}\left(A_{0}\right)\right|+\left|\operatorname{sh}\left(A_{1}\right)\right|$.
Hence $|\operatorname{sh}(A)| \geq\|A\|$.

Remark If A shatters S then A shatters any subset of S.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\text { forb }\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}
$$

Proof: Let $A \in \operatorname{Avoid}\left(m, K_{k}\right)$.

Remark If A shatters S then A shatters any subset of S.
Theorem (Sauer 72, Perles and Shelah 72, Vapnik and Chervonenkis 71)

$$
\text { forb }\left(m, K_{k}\right)=\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0}
$$

Proof: Let $A \in \operatorname{Avoid}\left(m, K_{k}\right)$.
Then $\operatorname{sh}(A)$ can only contain sets of size $k-1$ or smaller.
Then

$$
\binom{m}{k-1}+\binom{m}{k-2}+\cdots+\binom{m}{0} \geq|\operatorname{sh}(A)| \geq\|A\| .
$$

Critical Substructures

Definition A critical substructure of a configuration F is a minimal configuration $F^{\prime} \prec F$ such that

$$
\text { forb }\left(m, F^{\prime}\right)=\text { forb }(m, F) .
$$

When $F^{\prime} \prec F^{\prime \prime} \prec F$, we deduce that

$$
\text { forb }\left(m, F^{\prime}\right)=\text { forb }\left(m, F^{\prime \prime}\right)=\text { forb }(m, F) \text {. }
$$

Let $1_{k} \mathbf{0}_{\ell}$ denote the $(k+\ell) \times 1$ column of k 's on top of $\ell 0$'s. Let K_{k}^{ℓ} denote the $k \times\binom{ k}{\ell}$ simple matrix of all columns of sum ℓ.

Miguel Raggi

Steven Karp

Miguel Raggi

Steven Karp

Definition If A is $m \times n$, then $t \cdot A=[A A \cdots A]$ is $m \times t n$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{l|llll|lllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{lllll|llllll|lllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{lllllllllll|llll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{lllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=\operatorname{forb}\left(m, \mathbf{0}_{4}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{1}_{3}\right)=\operatorname{forb}\left(m, 2 \cdot \mathbf{0}_{3}\right)$.

Critical Substructures for K_{4}

$$
K_{4}=\left[\begin{array}{llllllllllllllll}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array}\right]
$$

Critical substructures are $\mathbf{1}_{4}, K_{4}^{3}, K_{4}^{2}, K_{4}^{1}, \mathbf{0}_{4}, 2 \cdot \mathbf{1}_{3}, 2 \cdot \mathbf{0}_{3}$. Note that forb $\left(m, \mathbf{1}_{4}\right)=$ forb $\left(m, K_{4}^{3}\right)=$ forb $\left(m, K_{4}^{2}\right)=$ forb $\left(m, K_{4}^{1}\right)$
$=$ forb $\left(m, \mathbf{0}_{4}\right)=$ forb $\left(m, 2 \cdot \mathbf{1}_{3}\right)=$ forb $\left(m, 2 \cdot \mathbf{0}_{3}\right)$.
The same is conjectured to be true for K_{k} for $k \geq 5$.

We can extend K_{4} and yet have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan 11) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{\mathbf{1}} \mathbf{0}_{2}\right]\right)=$ forb $\left(m, K_{4}\right)$.

We can extend K_{4} and yet have the same bound

$\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]=$

$$
\left[\begin{array}{llllllllllllllll|l}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Theorem (A., Meehan 11) For $m \geq 5$, we have forb $\left(m,\left[K_{4} \mid \mathbf{1}_{2} \mathbf{0}_{2}\right]\right)=$ forb $\left(m, K_{4}\right)$.
We expected in fact that we could add many copies of the column $\mathbf{1}_{2} \mathbf{0}_{2}$ and obtain the same bound, albeit for larger values of m.

Connor Meehan

Connor Meehan

We can extend K_{4} further and yet have the same bound

$$
\left[K_{4} \mid t \cdot K_{2}^{T}\right]=
$$

$$
\left[\left.\begin{array}{llllllllllllllll|}
1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0
\end{array} \right\rvert\, t \cdot\left[\begin{array}{ll}
1 & 1 \\
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\right]
$$

Theorem (A., Nikov 21) There exits a constant N_{t} so that for $m \geq N_{t}$, then forb $\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)=$ forb $\left(m, K_{4}\right)$.

We can extend K_{4} further and yet have the same bound

$\left[K_{4} \mid t \cdot K_{2}^{T}\right]=$
$\left.\left[\begin{array}{llllllllllllllll}1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0\end{array}\right) t \cdot\left[\begin{array}{ll}1 & 1 \\ 1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]\right]$

Theorem (A., Nikov 21) There exits a constant N_{t} so that for $m \geq N_{t}$, then forb $\left(m,\left[K_{4} \mid t \cdot K_{2}^{T}\right]\right)=$ forb $\left(m, K_{4}\right)$.
It is possible that as many as 5 different columns, each with 21 's, can be added to K_{4} but adding K_{4}^{2} increases bound to $\Theta\left(m^{4}\right)$.

Niko Nikov

Exact Bounds

Theorem (A., Füredi 84) forb $\left(m, \mathbf{1}_{k}\right)=$ forb $\left(m, K_{k}\right)$ and forb $\left(m, t \cdot \mathbf{1}_{k}\right)=\operatorname{forb}\left(m, t \cdot K_{k}\right)$.

Exact Bounds

Theorem (A., Füredi 84) forb $\left(m, \mathbf{1}_{k}\right)=$ forb $\left(m, K_{k}\right)$ and forb $\left(m, t \cdot \mathbf{1}_{k}\right)=$ forb $\left(m, t \cdot K_{k}\right)$.
Theorem (A, Barekat, Pellegrin 19) Let k, ℓ, t be given with $k>\ell$. Then for m large, forb $\left(m, t \cdot \mathbf{1}_{k} \mathbf{0}_{\ell}\right)=\operatorname{forb}\left(m, t \cdot K_{k}\right)+\sum_{i=m-\ell+1}^{m}\binom{m}{i}$.
Note that for small m, the bounds do not hold. The gap was small and we could use the existence of certain structures when we were close to the bound.

Zachary Pellegrin

Further extensions to K_{k}, Asymptotic Bounds

With Attila Sali, we published a conjecture in 2005 about what properties drive the asympotics of forb (m, F). Our conjecture says that you only have to look at a small number of possible constructions as candidates in $\operatorname{Avoid}(m, F)$. Students have made many contributions. It is still a conjecture!

Further extensions to K_{k}, Asymptotic Bounds

Let B be a $k \times(k+1)$ matrix which has one column of each column sum. Given two matrices C, D, let $C \backslash D$ denote the matrix obtained from C by deleting any columns of D that are in C (i.e. set difference). Let
$F_{B}(t)=\left[K_{k} \mid t \cdot\left[K_{k} \backslash B\right]\right]$.
Theorem (A, Griggs, Sali 97, A, Sali 05,
A, Fleming, Füredi, Sali 05) forb $\left(m, F_{B}(t)\right)$ and forb $\left(m, K_{k}\right)$ are both $\Theta\left(m^{k-1}\right)$.

The difficult problem here was the bound with either linear algebra or induction proofs.

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[0_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[0_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

Theorem (A, Sali 05 (for $k=3$), A, Fleming 09) forb $\left(m, F_{D}(t)\right)$ is $\Theta\left(m^{k-1}\right)$.
The argument used standard results for directed graphs, indicator polynomials and a linear algebra rank argument

Let D be the $k \times\left(2^{k}-2^{k-2}-1\right)$ simple matrix with all columns of sum at least 1 that do not simultaneously have 1 's in rows 1 and 2. We take $F_{D}(t)=\left[0_{k}(t+1) \cdot D\right]$ which for $k=4$ becomes

$$
F_{D}(t)=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}(t+1) \cdot\left[\begin{array}{lllllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1
\end{array}\right]\right]
$$

Theorem (A, Sali 05 (for $k=3$), A, Fleming 09) forb $\left(m, F_{D}(t)\right)$ is $\Theta\left(m^{k-1}\right)$.
The argument used standard results for directed graphs, indicator polynomials and a linear algebra rank argument
Theorem Let k be given and assume F is a k-rowed configuration which is not a configuration in $F_{B}(t)$ for any choice of B as a $k \times(k+1)$ simple matrix with one column of each column sum and not in $F_{D}(t)$, for any t. Then forb (m, F) is $\Theta\left(m^{k}\right)$.

Asymptotic Bounds

$$
F_{10}=\left[\begin{array}{llllll}
1 & 1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

Theorem (A., Sali, Tan, White 18) forb $\left(m, F_{10}\right)$ is $\Theta\left(m^{2}\right)$.
We generalized a previous proof for another 5×6 forbidden configuration that also resulted in a $\Theta\left(m^{2}\right)$ bound.

CindyTan

CindyTan

More Questions

K_{3}^{T} is the 8×3 transpose of K_{3}.
Theorem (Keevash et al 19) forb $\left(m, K_{3}^{T}\right)$ is $\Theta\left(m^{3}\right)$.
How does this fit in with the conjecture?

Kim Dinh

The following matrices are important:

$$
G_{6 \times 3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad I_{2} \times G_{6 \times 3}=\left[\begin{array}{ccc|ccc}
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Theorem (A., Raggi, Sali) forb $\left(m, G_{6 \times 3}\right)$ is $\Theta\left(m^{2}\right)$.
Theorem (A., Dinh 20) Our conjecture predicts that forb $\left(m, I_{2} \times G_{6 \times 3}\right)$ is $\Theta\left(m^{3}\right)$ and any 8-rowed F with forb (m, F) being $O\left(m^{3}\right)$ must have $F \prec I_{2} \times G_{6 \times 3}$. Adding any column α to $I_{2} \times G_{6 \times 3}$ results in forb $\left(m,\left[\alpha I_{2} \times G_{6 \times 3}\right]\right)$ being $\Omega\left(m^{4}\right)$.

The following matrices are important:

$$
G_{6 \times 3}=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \quad I_{2} \times G_{6 \times 3}=\left[\begin{array}{ccc|cc}
1 & 1 & 1 & 0 & 0 \\
0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 1 \\
\hline 1 & 1 & 1 & 1 & 1 \\
1 & 1 \\
1 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 \\
1 & 1 \\
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0
\end{array}\right]
$$

Theorem (A., Raggi, Sali) forb $\left(m, G_{6 \times 3}\right)$ is $\Theta\left(m^{2}\right)$.
Theorem (A., Dinh 20) Our conjecture predicts that forb $\left(m, I_{2} \times G_{6 \times 3}\right)$ is $\Theta\left(m^{3}\right)$ and any 8 -rowed F with forb (m, F) being $O\left(m^{3}\right)$ must have $F \prec I_{2} \times G_{6 \times 3}$. Adding any column α to $I_{2} \times G_{6 \times 3}$ results in forb $\left(m,\left[\alpha I_{2} \times G_{6 \times 3}\right]\right)$ being $\Omega\left(m^{4}\right)$.
Note that $K_{3}^{T} \prec I_{2} \times G_{6 \times 3}$ in columns 2,3,4 of $I_{2} \times G_{6 \times 3}$

There is lots more work to be done

