Two Extremal Set Results

Richard Anstee, UBC, Vancouver

February 14, 2022

Introduction

We begin with some helpful notations.
Definition $[m]=\{1,2, \ldots, m\}$
Definition $2^{[m]}=\{A \mid A \subseteq[m]\}$ or power set of $[m]$
Definition $A^{c}=[m] \backslash A$ or complement of A

Theorem 0

' \subset ' means contained in, ' \emptyset ' is the empty set, ' $A \cap B$ ' is intersection of A, B
Theorem Let $\mathcal{F} \subseteq 2^{[m]}$. Assume for all pairs $A, B \in \mathcal{F}$, we have $A \cap B \neq \emptyset$. Then

$$
|\mathcal{F}| \leq 2^{m-1}
$$

Theorem 0

' \subset ' means contained in, ' \emptyset ' is the empty set, ' $A \cap B$ ' is intersection of A, B
Theorem Let $\mathcal{F} \subseteq 2^{[m]}$. Assume for all pairs $A, B \in \mathcal{F}$, we have $A \cap B \neq \emptyset$. Then

$$
|\mathcal{F}| \leq 2^{m-1}
$$

Proof We can partition $2^{[m]}$ into 2^{m-1} pairs of sets A, A^{c}. At most one of the two sets A, A^{c} can be in \mathcal{F} since $A \cap A^{c}=\emptyset$. Thus at most half the sets in $2^{[m]}$ can be in \mathcal{F}, proving the bound.

Theorem 0

' \subset ' means contained in, ' \emptyset ' is the empty set, ' $A \cap B$ ' is intersection of A, B
Theorem Let $\mathcal{F} \subseteq 2^{[m]}$. Assume for all pairs $A, B \in \mathcal{F}$, we have $A \cap B \neq \emptyset$. Then

$$
|\mathcal{F}| \leq 2^{m-1}
$$

Proof We can partition $2^{[m]}$ into 2^{m-1} pairs of sets A, A^{c}. At most one of the two sets A, A^{c} can be in \mathcal{F} since $A \cap A^{c}=\emptyset$. Thus at most half the sets in $2^{[m]}$ can be in \mathcal{F}, proving the bound.

I was at a talk where Peter Frankl called this Theorem 0 of Extremal Set Theory. Peter Frankl is perhaps the world's most famous (living) Mathematician since he is a media personality in Japan

Sperner's Theorem

Definition Let $\mathcal{F} \subseteq 2^{[m]}$. We say \mathcal{F} is an antichain if for any pair $A, B \in \mathcal{F}$ neither $A \subset B$ nor $B \subset A$.
Theorem (Sperner 1927) Let $\mathcal{F} \subseteq 2^{[m]}$ and assume \mathcal{F} is an antichain. Then

$$
|\mathcal{F}| \leq\binom{ m}{\lfloor m / 2\rfloor} .
$$

Emanuel Sperner

$$
1905-1980
$$

Sperner's Theorem

Definition Let $\mathcal{F} \subseteq 2^{[m]}$. We say \mathcal{F} is an antichain if for any pair $A, B \in \mathcal{F}$ neither $A \subset B$ nor $B \subset A$.

Theorem (Sperner 1927) Let $\mathcal{F} \subseteq 2^{[m]}$ and assume \mathcal{F} is an antichain. Then

$$
|\mathcal{F}| \leq\binom{ m}{\lfloor m / 2\rfloor}
$$

We can achieve the bound by taking all subsets of $[\mathrm{m}]$ of size $\lfloor m / 2\rfloor$.
Note $\lfloor m / 2\rfloor$ is the greatest integer at most $m / 2$, sometimes called the floor of $m / 2$.

Definition A chain is a sequence $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ of subsets of $[m]$.
Definition We say a chain is saturated if $\left|A_{i+1}\right|=\left|A_{i}\right|+1$ for $i=1,2, \ldots, k-1$.
Definition We say a chain is symmetric if $\left|A_{i}\right|=m-\left|A_{k-i+1}\right|$ i.e. symmetric about $\lfloor m / 2\rfloor$.

Definition A chain is a sequence $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ of subsets of [m].
Definition We say a chain is saturated if $\left|A_{i+1}\right|=\left|A_{i}\right|+1$ for $i=1,2, \ldots, k-1$.
Definition We say a chain is symmetric if $\left|A_{i}\right|=m-\left|A_{k-i+1}\right|$ i.e. symmetric about $\lfloor m / 2\rfloor$.
Proof of Sperner's Theorem. We wish to partition $2{ }^{[m]}$ into $\binom{m}{\lfloor m / 2\rfloor}$ saturated symmetric chains. Two elements of an antichain cannot be together in any chain; at most one element of \mathcal{F} can come from a chain. The chains are saturated and symmetric and hence have at least one set of size $\lfloor m / 2\rfloor$. This yields the bound if we could find the partition.

We now seek the partition.

Proof continued

We use induction on m to obtain the partition. Assume we have the appropriate partition for $2^{[m]}$ with symmetric saturated chains $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ and we will obtain the appropriate partition for $2^{[m+1]}$.
We first make the observation that every set in $2^{[m+1]}$ either contains $m+1$ or does not and hence we can obtain $2^{[m+1]}$ from $2^{[m]}$ as follows. For each set $A \in 2^{[m]}$, we form two sets $A, A \cup\{m+1\}$.

Proof continued

We use induction on m to obtain the partition. Assume we have the appropriate partition for $2^{[m]}$ with symmetric saturated chains $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ and we will obtain the appropriate partition for $2^{[m+1]}$.
We first make the observation that every set in $2^{[m+1]}$ either contains $m+1$ or does not and hence we can obtain $2^{[m+1]}$ from $2^{[m]}$ as follows. For each set $A \in 2^{[m]}$, we form two sets $A, A \cup\{m+1\}$.
The chain $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ yields the $2 k$ sets $A_{1}, A_{2}, \ldots, A_{k}$ and $A_{1} \cup\{m+1\}, A_{2} \cup\{m+1\}, \ldots, A_{k} \cup\{m+1\}$. We can readily partition these $2 k$ sets into two chains, one of size $k+1$ and one of size $k-1$ as follows: First chain is $A_{1} \subset A_{2} \subset \cdots \subset A_{k} \subset A_{k} \cup\{m+1\}$ and second chain is $A_{1} \cup\{m+1\} \subset A_{2} \cup\{m+1\} \subset \cdots \subset A_{k-1} \cup\{m+1\}$ which we can verify are saturated chains and given that our original chain is symmetric, our new chain is symmetric with m replaced by $m+1$.

The red lines and the blue lines mark the two new (saturated, symmetric) chains obtained from the single chain $A_{1} \subset A_{2} \subset \cdots \subset A_{k}$ after adding element $m+1$.

It is possible, when m is even, that a symmetric saturated chain consists of a single set of size $m / 2$. In fact simple counting shows that this must be true, namely some of the chains in the decomposition would consist of a single set. Say the chain consists ofthe single set B with $|B|=m / 2$. Then, we have the two sets $B, B \cup\{m+1\}$ and $B \subset B \cup\{m+1\}$ forms a symmetric(!) saturated chain in $2^{[m+1]}$.

You will note that if we start with a chain of size 2, then it gives rise to two symmetric saturated chains in $2^{[m+1]}$, one of size 3 and one of size 1 .

m is even. Some special cases.

Thus $m / 2$ is an integer. Say A is a set of size $m / 2$ and is the sole element in a symmetric saturated chain of $2^{[m]}$. We can proceed as before

$$
A \quad \rightarrow \quad A^{A \cup\{m+1\}}
$$

The red line marks the new saturated symmetric chain $(A \subset A \cup\{m+1\})$.

m is odd. Some special cases.

Thus $m / 2$ is an integer. Say A_{1}, A_{2} be sets of size $(m-1) / 2,(m-1) / 2+1$ respectively that form a symmetric saturated chain $\left(A_{1} \subset A_{2}\right)$ of $2^{[m]}$ of 2 sets. We can proceed as before

The red lines mark the new (saturated, symmetric) chain of 3 sets $\left(A_{1} \subset A_{2} \subset A_{2} \cup\{m+1\}\right)$ and we also have the single chain consisting of the set $A_{1} \cup\{m+1\}$.

Thanks for your attention

