Two Extremal Set Results

Richard Anstee, UBC, Vancouver

February 14, 2022

Richard Anstee, UBC, Vancouver Two Extremal Set Results

> < 물 > < 물 >

臣

We begin with some helpful notations. **Definition** $[m] = \{1, 2, ..., m\}$ **Definition** $2^{[m]} = \{A | A \subseteq [m]\}$ or power set of [m]**Definition** $A^c = [m] \setminus A$ or complement of A

向 ト イヨ ト イヨト

'C' means contained in, 'Ø' is the empty set, ' $A \cap B$ ' is intersection of A, B

Theorem Let $\mathcal{F} \subseteq 2^{[m]}$. Assume for all pairs $A, B \in \mathcal{F}$, we have $A \cap B \neq \emptyset$. Then

 $|\mathcal{F}| \leq 2^{m-1}.$

通 とう ほとう きょう

臣

'C' means contained in, 'Ø' is the empty set, ' $A \cap B$ ' is intersection of A, B

Theorem Let $\mathcal{F} \subseteq 2^{[m]}$. Assume for all pairs $A, B \in \mathcal{F}$, we have $A \cap B \neq \emptyset$. Then

 $|\mathcal{F}| \leq 2^{m-1}.$

Proof We can partition $2^{[m]}$ into 2^{m-1} pairs of sets A, A^c . At most one of the two sets A, A^c can be in \mathcal{F} since $A \cap A^c = \emptyset$. Thus at most half the sets in $2^{[m]}$ can be in \mathcal{F} , proving the bound.

'C' means contained in, 'Ø' is the empty set, ' $A \cap B$ ' is intersection of A, B

Theorem Let $\mathcal{F} \subseteq 2^{[m]}$. Assume for all pairs $A, B \in \mathcal{F}$, we have $A \cap B \neq \emptyset$. Then

 $|\mathcal{F}| \leq 2^{m-1}.$

Proof We can partition $2^{[m]}$ into 2^{m-1} pairs of sets A, A^c . At most one of the two sets A, A^c can be in \mathcal{F} since $A \cap A^c = \emptyset$. Thus at most half the sets in $2^{[m]}$ can be in \mathcal{F} , proving the bound.

I was at a talk where Peter Frankl called this Theorem 0 of Extremal Set Theory. Peter Frankl is perhaps the world's most famous (living) Mathematician since he is a media personality in Japan

向下 イヨト イヨト

Sperner's Theorem

Definition Let $\mathcal{F} \subseteq 2^{[m]}$. We say \mathcal{F} is an antichain if for any pair $A, B \in \mathcal{F}$ neither $A \subset B$ nor $B \subset A$.

Theorem (Sperner 1927) Let $\mathcal{F} \subseteq 2^{[m]}$ and assume \mathcal{F} is an antichain. Then

$$\mathcal{F}| \leq \binom{m}{\lfloor m/2 \rfloor}.$$

Emanuel Sperner

1905 - 1980

A (1) > (1) = (1)

Definition Let $\mathcal{F} \subseteq 2^{[m]}$. We say \mathcal{F} is an antichain if for any pair $A, B \in \mathcal{F}$ neither $A \subset B$ nor $B \subset A$.

Theorem (Sperner 1927) Let $\mathcal{F} \subseteq 2^{[m]}$ and assume \mathcal{F} is an antichain. Then

$$|\mathcal{F}| \leq \binom{m}{\lfloor m/2 \rfloor}.$$

We can achieve the bound by taking all subsets of [m] of size $\lfloor m/2 \rfloor$. Note $\lfloor m/2 \rfloor$ is the greatest integer at most m/2, sometimes called the floor of m/2.

ヨト くほと くほとう

Definition A chain is a sequence $A_1 \subset A_2 \subset \cdots \subset A_k$ of subsets of [m].

Definition We say a chain is saturated if $|A_{i+1}| = |A_i| + 1$ for i = 1, 2, ..., k - 1.

Definition We say a chain is symmetric if $|A_i| = m - |A_{k-i+1}|$ i.e. symmetric about $\lfloor m/2 \rfloor$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

臣

Definition A chain is a sequence $A_1 \subset A_2 \subset \cdots \subset A_k$ of subsets of [m].

Definition We say a chain is saturated if $|A_{i+1}| = |A_i| + 1$ for i = 1, 2, ..., k - 1.

Definition We say a chain is symmetric if $|A_i| = m - |A_{k-i+1}|$ i.e. symmetric about $\lfloor m/2 \rfloor$.

Proof of Sperner's Theorem. We wish to partition $2^{[m]}$ into $\binom{m}{\lfloor m/2 \rfloor}$ saturated symmetric chains. Two elements of an antichain cannot be together in any chain; at most one element of \mathcal{F} can come from a chain. The chains are saturated and symmetric and hence have at least one set of size $\lfloor m/2 \rfloor$. This yields the bound if we could find the partition.

We now seek the partition.

向下 イヨト イヨト

Proof continued

We use induction on m to obtain the partition. Assume we have the appropriate partition for $2^{[m]}$ with symmetric saturated chains $A_1 \subset A_2 \subset \cdots \subset A_k$ and we will obtain the appropriate partition for $2^{[m+1]}$.

We first make the observation that every set in $2^{[m+1]}$ either contains m + 1 or does not and hence we can obtain $2^{[m+1]}$ from $2^{[m]}$ as follows. For each set $A \in 2^{[m]}$, we form two sets $A, A \cup \{m+1\}$.

• • = • • = • •

Proof continued

We use induction on m to obtain the partition. Assume we have the appropriate partition for $2^{[m]}$ with symmetric saturated chains $A_1 \subset A_2 \subset \cdots \subset A_k$ and we will obtain the appropriate partition for $2^{[m+1]}$.

We first make the observation that every set in $2^{[m+1]}$ either contains m + 1 or does not and hence we can obtain $2^{[m+1]}$ from $2^{[m]}$ as follows. For each set $A \in 2^{[m]}$, we form two sets $A, A \cup \{m+1\}$.

The chain $A_1 \subset A_2 \subset \cdots \subset A_k$ yields the 2k sets A_1, A_2, \ldots, A_k and $A_1 \cup \{m+1\}, A_2 \cup \{m+1\}, \ldots, A_k \cup \{m+1\}$. We can readily partition these 2k sets into two chains, one of size k+1and one of size k-1 as follows: First chain is $A_1 \subset A_2 \subset \cdots \subset A_k \subset A_k \cup \{m+1\}$ and second chain is $A_1 \cup \{m+1\} \subset A_2 \cup \{m+1\} \subset \cdots \subset A_{k-1} \cup \{m+1\}$ which we can verify are saturated chains and given that our original chain is symmetric, our new chain is symmetric with m replaced by m+1.

The red lines and the blue lines mark the two new (saturated, symmetric) chains obtained from the single chain $A_1 \subset A_2 \subset \cdots \subset A_k$ after adding element m + 1.

> < 물 > < 물 >

It is possible, when *m* is even, that a symmetric saturated chain consists of a single set of size m/2. In fact simple counting shows that this must be true, namely some of the chains in the decomposition would consist of a single set. Say the chain consists ofthe single set *B* with |B| = m/2. Then, we have the two sets $B, B \cup \{m+1\}$ and $B \subset B \cup \{m+1\}$ forms a symmetric(!) saturated chain in $2^{[m+1]}$.

You will note that if we start with a chain of size 2, then it gives rise to two symmetric saturated chains in $2^{[m+1]}$, one of size 3 and one of size 1.

• • = • • = •

Thus m/2 is an integer. Say A is a set of size m/2 and is the sole element in a symmetric saturated chain of $2^{[m]}$. We can proceed as before

$$A \qquad \stackrel{\rightarrow}{\longrightarrow} \qquad \stackrel{A \cup \{m+1\}}{\swarrow}$$

The red line marks the new saturated symmetric chain $(A \subset A \cup \{m+1\})$.

Thus m/2 is an integer. Say A_1, A_2 be sets of size (m-1)/2, (m-1)/2 + 1 respectively that form a symmetric saturated chain $(A_1 \subset A_2)$ of $2^{[m]}$ of 2 sets. We can proceed as before

The red lines mark the new (saturated, symmetric) chain of 3 sets $(A_1 \subset A_2 \subset A_2 \cup \{m+1\})$ and we also have the single chain consisting of the set $A_1 \cup \{m+1\}$.

★ 圖 ▶ ★ 温 ▶ ★ 温 ▶ … 温

Thanks for your attention

・ロト ・御 ト ・ ヨ ト ・ ヨ ト

Ð,