Solving 0-sum games

If \exists saddle point: easy.

e.g. $A = \begin{pmatrix} 1 & 2 \\ 0 & x \end{pmatrix}$: (row 1, col 1) is equilibrium

\[A = \begin{pmatrix} -1 \\ -1 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix} \]
both using $\left(\frac{1}{2}, \frac{1}{2}\right)$ is equil.

Optimal replies: If p_1 uses strategy x, payoff cost vector for p_2 is x^TA

optimal response to x is the minimal minimal entry of x^TA. If several equally small entries, pick any distribution on the small entries.
e.g. if $x^tA = (2,3,2,4)$ optimal replies are $(p, 0, 1-p, 0)$. For p_1: if p_2 uses y, optimal replies use maximal entries of Ay.

def: A Nash equilibrium (NE) is a pair of strategy (x^*, y^*) such that x^* is an optimal reply to y^*, and y^* is an optimal reply to x^*.

Thm. For a 0-sum game, (x, y) is a NE if and only if:

1. For some value V, all entries of x^tA are $\geq V$, and if $(x^tA)_i \neq V$ then $y_i = 0$ and
2. all entries of Ay are $\leq V$, and if $(Ay)_i \neq V$ then $x_i = 0$.
e.g. \(A = \begin{pmatrix} 2 & 0 & 4 \\ 1 & 3 & 3 \end{pmatrix} \) Let \(x = \left(\frac{1}{2}, \frac{1}{2} \right) \) \(y = \left(\frac{2}{4}, \frac{1}{4}, 0 \right) \).

\[
x^T A = \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \\ \frac{3}{2} \end{pmatrix} \quad A y = \begin{pmatrix} \frac{3}{2} \\ \frac{3}{2} \end{pmatrix}
\]

\(V = \frac{3}{2} , \quad (x^T A)_2 \neq \frac{3}{2} \) and indeed \(y_3 = 0 \).

\((x^T A)_1 \geq \frac{3}{2} \quad (A y)_1 \leq \frac{3}{2} \).

If \((x,y)\) is a NE then \(V \) is the value of \(A \).

If \(P_1 \) uses \(x \), get \(\geq V \).

If \(P_2 \) uses \(y \), pay \(\leq V \).

e.g. \(A = \begin{pmatrix} 1 & 2 \\ 0 & 4 \end{pmatrix} \) \(P_1 : (1,0) \) or \((0,1)\) or \((p,1-p)\) for some \(p \in (0,1) \).

Case \(x = (1,0) \): \(x^T A = (1,2) \) \(y^T = (1,0) \) ... check this is NE.

Case \(x = (0,1) \): \(x^T A = (0,4) \) \(y^T = (1,0) \) \(x \) is not optimal reply to \(y \).
Case: \(x^T = (p, 1-p) \). \(x^T A = (p, 4-2p) \)

\(x \) uses both rows, so \(A y \) has equal entries.

\[y_1 + 2y_2 = 4y_2 \quad y_1 + y_2 = 1 \quad \text{so} \quad y = \left(\frac{6}{7}, \frac{1}{7} \right) \left(\frac{2}{3}, \frac{1}{3} \right) \]

\(A y = \left(\frac{4}{3}, \frac{4}{3} \right) \). Both entries of \(y \) not 0, so both entries of \(x^T A \) are minimal, i.e. \(p = 4-2p \) or \(p = \frac{4}{3} \leq \)

Dominating strategies

If action \(i \) is better than \(j \), no matter what opp. does, never use \(j \).

In a 0-sum game, if rows \(i, j \) satisfy

\[\forall k \ A_{ik} \geq A_{jk}, \text{ never pick row } k \text{ or } j \]

say row \(i \) dominates row \(j \).
Value of game unchanged by deleting row \(j \).

Similarly if \(\text{col } i \leq \text{col } j \) in every entry, can delete \(\text{col. } j \).

\[
A = \begin{pmatrix}
7 & 8 & 0 & 0 \\
2 & 11 & -10 & -82 \\
4 & 5 & 1 & 0
\end{pmatrix}
\]

row 2 dominated by 1.

\[
\begin{pmatrix}
7 & 8 & 0 & 0 \\
4 & 5 & 1
\end{pmatrix}
\]

col. 1,2,3 dominated by 4.

reduce to \((\emptyset)\) reduce: \((\emptyset)\)
A 2xn game is not too bad.

\[V = \max \min_{x \in \Delta^n} x^T A y \]

\[\min_{y \in \Delta^n} \]

Reduces to finding the max of the min of several linear funcs.