Monotonicity

Idea: having options is good.

Notation: \(x \xrightarrow{A} y \) if player A can move from \(x \) to \(y \).

Game: set of positions, and legal moves for \(A, B \).

Say that a game \(\hat{G} \) is better for \(A \) than \(G \) if:
when ever \(x \xrightarrow{A} y \) in \(G \), also \(x \xrightarrow{A} y \) in \(\hat{G} \).

Thm If \(\hat{G} \) is better than \(G \) for \(A \), and worse than \(G \) for \(B \) and if \(A \) wins in \(G \) from pos. \(x \), then \(A \) also wins in \(\hat{G} \) from \(x \).

Note: same set of moves: both better and worse, like \(\geq \), not \(> \).

Pf: Just follow the winning strategy for \(G \). \(\square \)
E.g. Strategy stealing in Hex:
Alice takes arbitrary \(x \), play as 2nd from here.
For Bob, this is worse game.
(Compare: Bob first; \(G \).
Bob first, Alice has \(x (G) \).
If Alice needs to play at \(x \) to use 2nd player strategy, she plays instead \(x' \).
(As if Alice has 1 movable stone, extra valid moves to place a regular stone at \(x \), move special stone \(x \rightarrow x' \).)
0-sum games

2 player games, fully adversarial: better for A is worse outcome for B.
e.g. one wins, other loses.

Strategy: A choice of move from every possible position of a game.
e.g. Subtraction, set \{1, 2\}

Strategies eg:
* Always take 1,
 * Alternate (if remember time)
 * 2 from even 1 from odd.
* 1 unless \(n = 3n + 2\). [winning]
* Coin toss. [not deterministic]
Pure strategy = non random.
Mixed strategy = with randomness.

If A, B pick their strategies, the outcome is known. A game says what is the outcome for any pair of strategies.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td>-1</td>
<td>1</td>
<td>-1</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 = Alice wins
-1 = Bob wins
0 = draw

This matrix encodes the whole game.
A 0-sum game is given by a matrix A. If A is an $n \times m$ matrix, player I has n strategies and player II has m strategies. Each player picks a strategy simultaneously. If their picks are i and j, the outcome is A_{ij}. Player 2 pays A_{ij} to player 1.

0-sum: total gain is always 0.

In combinatorial games, all entries A_{ij} are ± 1. A winning strategy for player 1 is to pick a row of all $+1$ or a column of all -1.