Hex

Take turns claiming hexagons.

Goal: create a path connecting your two sides.

Blue wins.

either

or

Red wins

Blue wins
Theorem: In the \(n \times n \) Hex game, Player 1 can win.

Proof: Strategy stealing.

Assume P2 has a winning strategy. P1 makes some first move (arbitrary) say at \(x \).

Follow strategy for P2, ignoring \(x \).

P2 cannot use \(x \).

If P1 needs \(x \), play arbitrary \(x' \).

So P1 will win. \(\square \)
Bridge-it: Strategy stealing \Rightarrow 1st player can win.

explicit strategy: Based on two trees.

when red removes an option, re-attach the tree. At all times, leave connected green + blue trees.

Eventually, end up with a connection Top-Bottom. A connected: Can reach any vertex to any other, using only black/blue edges.
In random turn hex on \(n \times (an) \) board,\n
\[P(Blue \ wins) \xrightarrow{n \to \infty} F(a) \]

In random turn Bridge it \(an \) same holds.
Alice, Bob play a partisan game.

In each position:

- If Alice 1st \(\Rightarrow \) Alice wins
- If Bob 1st \(\Rightarrow \) Bob wins

N- pos.: 1st player wins
P- pos.: 2nd wins
A- pos.: Alice wins
B- pos.: Bob wins.

e.g. Subtraction game. Alice can take \(\leq 4 \) chips
Bob
\(\leq 3 \) chips
From x:
If Bob can move to some P or B pos., then x is N, or B
otherwise x is P or NA.

If Alice can move to some P or A pos. then x is A or N
otherwise, x is P or B.

e.g. subtraction: $S_A = \{1, 4\} \quad S_B = \{2, 3\}$

$\begin{array}{cccccccccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\
\hline
\end{array}$

(repeats)