Inclusion-Exclusion

\[P(E \cup F) = P(E) + P(F) - P(E \cap F) \]

proof

\[E \cup F = A \cup B \cup C \]

where \(A = E \setminus F \), \(B = E \cap F \), \(C = F \setminus E \)

\[P(E) = P(A) + P(B) \]
\[P(F) = P(B) + P(C) \]
\[P(E \cup F) = P(A) + P(B) + P(C) = P(E) + P(C) \]
\[= P(E) + P(F) - P(B) \]

\[\Box \]
RECALL!

Select k out of n elements unordered, no replacement, the number of ways is \[\binom{n}{k} = \frac{n!}{k!(n-k)!} = \binom{n}{k} = \binom{n}{n-k} \]

\begin{equation*}
\text{binomial coefficient}
\end{equation*}

Binomial Theorem

\[(x+y)^n = \sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k} \]

Proof: \[(x+y)(x+y)(x+y) \ldots (x+y) = x \cdot x \ldots x + x \ldots x \cdot y + \ldots \]

pick x or y from each $(x+y)$

number of terms equal to $x^k y^{n-k}$ is \(\binom{n}{k} \). \qed
Note: \(\binom{n}{k} = 0 \) if \(k > n \)

\[
\binom{n}{0} = \binom{n}{n} = 1
\]

\[
\binom{n}{k} = \binom{n}{n-k}
\]

Summary: To select \(k \) out of \(n \):

- **Ordered with replacement:** \(n^k \)
- **Ordered without replacement:** \(\frac{n!}{(n-k)!} \)
- **Unordered:** \(\binom{n+k-1}{k} \)

VPC, VCP, PVC, PCV, CVP, CPV

VPP, PVP, PPV
eg: How many ways to select 3 men + 3 women from 40 men + 50 women?

Ans: \(\binom{40}{3} \cdot \binom{50}{3} \)

eg: If select 6 at random, \(P(\text{get 3 men}) \)?

Ans: \(\frac{\binom{40}{3} \cdot \binom{50}{3}}{\binom{90}{6}} \)

eq: what is \(P(\text{full house}) \) in 5 card poker hand?

Ans: \(S = \{5\text{-card hands}\} \)

\(|S| = \binom{52}{5} \).

\(E = \{\text{full house}\} \)

\(|E| = 13 \cdot 12 \cdot \binom{4}{3} \cdot \binom{4}{2} \).
\[|E| = 13 \cdot 12 \cdot \binom{4}{3} \cdot \binom{4}{2} \]

Always make sure, E in same category as S.

E.g. both ordered / not...

Q: what is \(P(\text{full house}) \) in 5-dice game?

\[\rightarrow 3 \text{ equal dice, 2 equal dice: } aabb \text{ in any order} \]

Ans: \[|S| = 6^5 \] \[|E| = 6 \cdot 5 \cdot \binom{5}{3} \]

\(a \text{ value} \) \[|E| \text{ value} \] \[\text{which dice are} \]

This is ordered!
If use n sided die: $n(n-1)\left(\frac{5}{3}\right)$