Recall:

Impartial Combinatorial Game \([ICG]\)

Both players have same moves allowed, no randomness/chance, full information.

Progressively bounded: A position \(x\) there is a bound \(B(x)\) s.t. starting at \(x\), the game last \(\leq B(x)\) moves.

\[N_i = \text{positions where next player can win in } \leq i \text{ moves}, \]

\[P_i = \text{"previous" } \leq i \]

\[N = \bigcup_{i=0}^{\infty} N_i, \quad P = \bigcup_{i=0}^{\infty} P_i. \]

Strategy: a choice of move from every pos. in the game.
Theorem: In a progressively bounded game [ICG], every pos. is in N or in P.

Rules: If all followers in N, x e P.
If some follower in P, x e N.

E.g., subtraction \(\{1, 3, 4\} \)

Theorem: In subtraction game with set S finite, the type seq. is eventually periodic.

Proof: Assume \(\max(S) = k \).
Type of N determined by types of \((n-k, ..., n-1)\).
This vector has \(2^k\) possible values.
It repeats some time!
Type of $n-k$ same as $m-k = n+t-k$
$m= n+t$
$m-k+1 = n+t-k+1$

$m-1 = n+t-1$

Then \(\text{Type}(n) = \text{Type}(m) \)

By induction, \(\text{Type}(n+i) = \text{Type}(m+i) \) \(\forall i \geq 0 \)

= Type\(m+t+i\)

i.e. Period t. \(\square \)
Theorem: An $n \times m$ board of Chomp is an N pos.

[1st Player Can Win]

Strategy Stealing

Assume (for contradiction) Player 2 can win.

Every follower of $(n \times m)$ is N pos.

Has 1×1 has N so has a P-follower

But this is also a follower of $[n \times m]$ so $[n \times m]$ is not P.