Central Limit Theorem (CLT)

LLN: If X_1, \ldots, X_n iid (independent and identically distributed)

then $S_n = X_1 + \cdots + X_n$ is $\approx N(\mu, n\sigma^2)$ where $\mu = EX$.

How close is S_n to μ?

As Case: X_i is indep $N(0, \sigma^2)$

$X_1 + X_2 \approx N(0, 2\sigma^2)$

$S_n = X_1 + \cdots + X_n$ is $N(0, n\sigma^2)$

so $\frac{S_n}{\sqrt{n}\sigma}$ is $N(0,1)$, for every n.
e.g. \[\Pr \left(\frac{S_n}{\sqrt{n}} \in [-1, 1] \right) = \Pr \left(N(0,1) \in [-1, 1] \right) = \Phi(1) - \Phi(-1) \]

this is the same as \[S_n \in [-\sqrt{n}\sigma, \sqrt{n}\sigma] \]

\(\Phi \) is the normal cdf.

CLT

Assume \(X_1, \ldots, X_n \) are iid with \(EX_i = \mu \)
and \(\text{Var}(X_i) = \sigma^2 \). Let \(S_n = X_1 + X_2 + \ldots + X_n \).

Then

\[\frac{S_n - n\mu}{\sqrt{n} \sigma} \xrightarrow{\text{dist.}} N(0,1) \]

Recall: \(Z_n \xrightarrow{\text{dist.}} N(0,1) \) means that for any \(a, b \)

\[\Pr \left(Z_n \in [a, b] \right) \rightarrow \Pr \left(N(0,1) \in [a, b] \right) = \Phi(b) - \Phi(a), \]
Qn: Let \(S \) be \(S_{1000} \), sum of 1000 dice.

estimate \(P(S_{r} \in [3300, 3700]) \), i.e., within 200 of \(ES \).

Chebyshev: \(P(|S - ES| \geq 200) \leq \frac{\text{Var}(S)}{200^2} \)

This is the complement of \(S \in (3300, 3700) \).

\[\text{Var}(S) = 1000 \cdot \text{Var}(X), \quad X = \text{single die}. \]

\[= 1000 \cdot (35/12) \]

So \(P(|S - ES| > 200) \leq \frac{35000}{12 \cdot 200^2} = 0.07 \ldots \)

\[P(S \in (3400, 3600)) \geq 1 - \frac{35000}{12 \cdot 100^2} = 0.7 \ldots (1 - 0.3) = 0.7 \ldots \]
CLT for same Qn:

\[3300 \leq S \leq 3700 \iff -200 \leq S - 3500 \leq 200 \]

\[\iff \frac{-200}{\sqrt{1000 \cdot 0.01}} \leq \frac{S - 3500}{\sqrt{1000 \cdot 0.01}} \leq \frac{200}{\sqrt{1000 \cdot 0.01}} \]

\[\approx N(0,1) \]

\[P(3300 \leq S \leq 3700) \approx P(a \leq N(0,1) \leq b) \]

\[= \Phi(b) - \Phi(a) \]

\[a = b \]

\[b = \frac{200}{\sqrt{1000 \cdot (35/12)}} = 3.7 \]

for one die: \[\sigma^2 = 35/12 \]

so this probab. is \(\geq 0.99999 \)

\[\Phi \left(\frac{15 - 3500}{\sqrt{1000 \cdot 35/12}} \right) - \Phi \left(\frac{-100}{\sqrt{1000 \cdot 35/12}} \right) = \Phi(1.9) - \Phi(-1.9) \]
e.g. without treatment, 30% of patients heal.

Treat 100 patients with experimental drug.

50 got better.

Null hypothesis: the drug has no effect. \(H_0 \)

Find \(P(\bar{Z} \geq 50 \mid H_0) \). If this is small, we rule out \(H_0 \).

If \(H_0 \) holds, then \(\bar{Z} \sim \text{Bin}(100, 0.3) \)

\(\bar{Z} = X_1 + \ldots + X_{100} \) where each \(X_i \) is \(\text{Bern}(0.3) \)

By CLT, \(\frac{\bar{Z} - 30}{\sqrt{100 \cdot 0.21}} \sim N(0, 1) \)

\[
P(\bar{Z} \geq 50) = P\left(\frac{\bar{Z} - 30}{\sqrt{100 \cdot 0.21}} \geq \frac{50 - 30}{\sqrt{100 \cdot 0.21}} \right) \approx 1 - \Phi\left(\frac{50 - 30}{\sqrt{21}} \right)
\]

\[
= 1 - \Phi(4.36)
\]
$1 - \Phi(4.36)$ very small, so H_0 very unlikely.