Events

Sample space: \(S = \text{set of possible outcomes.} \)

Events: \(E \) is a subset of \(S \).

e.g. \(S = \{H,T\} \) \(\phi = \{\} \), \(\{H\}, \{T\}, \{H,T\} = S \)

\(\text{events.} \)

e.g. \(S = \{1, 2, \ldots, 6\} \) there are \(2^6 = 64 \) events

Complement: \(E^c \) (or \(\overline{E} \))

\(E^c = S \setminus E \) all outcomes not in \(E \).

\(S^c = \phi \) \(\phi^c = S \) \((E^c)^c = E \) for any \(E \).
Intersection

$E \cap F$ or EF

$E \cap F = \text{all outcomes in both } E, F.$

e.g. $S = \{1, \ldots, 6\}$

$E = \text{odd, } F = \text{prime } \Rightarrow \{2, 3, 5\}$

$E \cap F = \{3, 5\}$

$E \cap (F \cap G) = (E \cap F) \cap G$ similarly for more.
Disjoint events: \(E, F \) are disjoint if \(E \cap F = \emptyset \)

def events \(E_1, E_2, E_3, \ldots \) are disjoint if any two \(E_i, E_j \) are disjoint.

Note: \(E \cap E^c = \emptyset \) for all \(E \).

Union:
\(E \cup F = \) all outcomes in \(E \) or \(F \) (or both)
\text{UFUG} : \text{outcomes in at least one of } E, F, G

\[E \cup E^c = S \text{ for any } E. \]

\textbf{Properties}

\begin{align*}
\text{distributive laws} & \quad \circ \quad (E \cap F) \cup G = (E \cup G) \cap (F \cup G) \\
\circ \quad (E \cup F) \cap G = (E \cap G) \cup (F \cap G) \\
\end{align*}

\text{de Morgan:} \quad \text{complement of intersection is union of complements}

\[(E \cap F)^c = E^c \cup F^c \]
Generally: \((\bigcap_{i=1}^{k} E_i)^c = \bigcup_{i=1}^{k} E_i^c \)

Similarly: \((\bigcup_{i=1}^{k} E_i)^c = \bigcap_{i=1}^{k} E_i^c \)

Probability

Assign each event a probability \(P(E) \) describing how often / what fraction of the time \(E \) occurs.

Axioms of probability:

1. For any \(E \), \(0 \leq P(E) \leq 1 \).
2. \(P(\emptyset) = 0 \), \(P(S) = 1 \).
3. If \(E_1, E_2, \ldots \) are disjoint, then \(P(\bigcup E_i) = \sum_i P(E_i) \).
e.g. \(S = \{ (a, b) \mid 1 \leq a, b \leq 6 \} \) outcomes of two die rolls

\[E = \{ a+b = 7 \} \quad F = \{ a+b = 18 \} = \{ (5,6), (6,5) \} \]

\[P(E) = \frac{6}{36} \quad P(F) = \frac{2}{36} \]
so
\[P(E \cup F) = \frac{6}{36} + \frac{2}{36} \]

Example: If \(S \) is a finite set, uniform probab. on \(S \) is defined by

\[P(A) = \frac{|A|}{|S|} \]

\[P(a=6 \text{ or } b=6) = \frac{11}{36} \]

\[\neq P(a=6) + P(b=6) \]

\[\frac{1}{6} + \frac{1}{6} = \frac{1}{3} \]