Mathematics 220

Practice Quiz 2 — 10 minutes

- The quiz consists of 2 pages and 2 questions worth a total of 6 marks.
- No work on this page will be marked.
- Fill in the information below before turning to the quiz.

<table>
<thead>
<tr>
<th>Student number</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preferred Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Given Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Family Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For each of the following quantified statements, give their negations. Then determine whether they are true or false. You must prove your answers — simply stating true or false is insufficient.

1. **3 marks** \(\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ so that } (x \mid y) \iff (y \mid x). \)

Solution: Negation:

\[\exists x \in \mathbb{Z} \text{ so that } \forall y \in \mathbb{Z}, (x \mid y) \text{ XOR } (y \mid x) \]

True.

Proof. Let \(x \) be any integer and then set \(y = x \). Hence \(x \mid y \) and \(y \mid x \) are both true statements and the biconditional is true. \(\square \)

2. **3 marks** \(\exists x \in \mathbb{Z} \text{ so that } \forall y \in \mathbb{Z}, (x \nmid y) \implies (y \mid x). \)

Solution: Negation:

\[\forall x \in \mathbb{Z}, \exists y \in \mathbb{Z} \text{ so that } (x \nmid y) \land (y \nmid x) \]

True.

Proof. Let \(x = 0 \) and let \(y \) be any integer. Then we can always write \(x = 0 = y \cdot 0 \), so the conclusion is always true. Since the conclusion is always true, the implication is true. \(\square \)

Alternatively:

Proof. Let \(x = 1 \) and let \(y \) be any integer, then since \(y = x \cdot y = 1 \cdot y \), it follows that \(x \mid y \). Since the hypothesis of the implication is false, the implication is true. \(\square \)