Homework 5

(1) Chapter 10: Question 8

(2) Chapter 10: Question 18

(3) Chapter 10: Question 22

(4) The Fibonacci numbers are defined by the recurrence

\[F_1 = 1 \quad F_2 = 1 \quad \text{and} \quad F_n = F_{n-1} + F_{n-2} \quad \text{for} \quad n > 2. \]

Show that for all \(k \in \mathbb{N} \), \(F_{4k} \) is a multiple of 3.

Here are the first few Fibonacci numbers:

\[(F_n) = (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, \ldots) \]

(5) Let \(f(x) = x\ln x \) and \(x > 0 \). Let \(f^{(n)}(x) \) denote the \(n \)th derivative of \(f(x) \) for \(n \in \mathbb{N} \).

Prove that

\[f^{(n)}(x) = (-1)^n \frac{(n-2)!}{x^{n-1}} \]

for all integers \(n \geq 3 \).

The next two are a slightly harder:

6. In cases where proving the inductive step is harder for a proof by induction, one can use another induction method, called strong induction, and it goes as follows:

Theorem 1. A statement of the form “\(\forall n \in \mathbb{N}, P(n) \)” is true if

- The statement \(P(1) \) is true,

 and,

- given \(k \geq 1 \), \(P(1) \land P(2) \land P(3) \land \ldots \land P(k) \) \(\implies \) \(P(k+1) \).

Use this result to prove the following statement:

Suppose you begin with a pile of \(n \) stones \((n \geq 2) \) and split this pile into \(n \) separate piles of one stone each by successively splitting a pile of stones into two smaller piles. Each time you split a pile you multiply the number of stones in each of the two smaller piles you form, so that if these piles have \(p \) and \(q \) stones in them, respectively, you compute \(pq \). Show that no matter how you split the piles (eventually into \(n \) piles of one stone each), the sum of the products computed at each step equals \(\frac{n(n-1)}{2} \).

For example — say with start with 5 stones and split them as follows:

\[(5) \mapsto (2), (3) \mapsto (1), (1), (2), (1) \mapsto (1), (1), (1), (1) \]

So we total up \(6 + 1 + 2 + 1 = 10 = \frac{5 \times 4}{2} \) \(\checkmark \)
7. This question involves two definitions:

- We say that a function, f, is “essentially effective”, if $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}$ s.t. $y \geq x$ and $|f(y)| \geq 1$.

- We also say that a function, g, is “almost effective”, if $\exists x \in \mathbb{R}$ s.t. $\forall y \in \mathbb{R}$, $(y \geq x) \implies |f(y)| \geq 1$.

We’ve just made this up and are not actually used in mathematics, but we’ll just use them in this question.

Use these definitions to prove, or find counter-examples to disprove the following two statements:

(a) If f is essentially effective, then it is almost effective.

(b) If f is almost effective, then it is essentially effective.