Rosenfeld R. Grover N B. Control of mini-R1 plasmid replication: A computer simulation, Plasmid 29(2) :94-116, 1993.

Abstract

A molecular model for the control of plasmid R1 replication has been proposed by Nordstrom, Molin and Light (Plasmid 12, 71-90, 1984), involving three genes: repA, copA, copB. RepA codes for a polypeptide whose synthesis is required for initiation; relication is controlled by regulating this synthesis. CopA encodes a small, unstable, untranslated RNA molecule that inhibits translation of the repA message between whereas copB produced a protein that inhibits transcription from the repA promoter. We have recast this model into precise mathematical terms and tested it by computer simulation of a synchronous culture in steady-state balanced growth, composed of individual Escherichia coli cells harboring the small, unstable derivative, mini-RI. All single-cell steady-state distributions obtained are independent of initial conditions, and the average values of various plasmid-related variables are similar to those measured experimentally. The relationship between the number of replication events per cell and the copy numbers at birth, as predicted by the model, mitigates against a sensitive correction mechanism for cells born with other than average copy number and is much closer quantitatively to a nonresponse system, although there is a weak dependence on copy number. The effect of the convergnt transcription initiated at the repA and copB promoters on the expression of the copA gene is found to contribute little to the sability of mini-R1 replicons under steady-state growth conditions or to their potential for survival following infection. In fact, the role of the entire CopB control loop is shown to be quite minor, both in steady state and after infection. It is pointed out that genetic manipulations are far more easily performed in silico than in vivo but that results of the kind presented here are very often possible only when simulating individaul cells.


Return to In Silico Biology References