Han HM. Kolhatkar AA. Marino MW. Manchester KM. Donner DB.Identification, characterization, and homologous up-regulation of latent (cryptic) receptors for tumor necrosis factor-alpha in rat liver plasma membranes.Journal of Biological Chemistry. 265(30):18590-4, 1990 Oct 25.

Abstract

A population of latent (cryptic) receptors for tumor necrosis factor-alpha (TNF) has been characterized in the rat liver plasma membrane (PM). 125I-TNF bound to high (Kd = 1.51 +/- 0.35 nM) and low (Kd = 13.58 +/- 1.45 nM) affinity receptors in PM. Solubilization of PM with 1% Triton X-100 prior to incubation with 125I-TNF increased both high affinity (from 0.33 +/- 0.04 to 1.67 +/- 0.05 pmol/mg of protein) and low affinity (from 1.92 +/- 0.16 to 7.57 +/- 0.50 pmol/mg of protein) TNF binding without affecting the affinities for TNF. Digestion of intact PM with chymotrypsin abolished most of the TNF binding capacity of PM. However, substantial binding activity was recovered by solubilization of chymotrypsin-treated PM with 1% Triton X-100, suggesting the presence of a large latent pool of TNF receptors. The affinities of the high and low affinity sites recovered from chymotrypsin-treated membranes were similar to those of intact PM. Affinity labeling of receptors whether from PM, solubilized PM, or membranes digested with chymotrypsin and then solubilized resulted in cross-linking of 125I-TNF into Mr 130,000, 90,000, and 66,000 complexes. Thus, the properties of the latent TNF receptors were similar to those initially accessible to TNF. To determine if exposure of latent receptors is regulated by TNF, 125I-TNF binding to control and TNF-pretreated membranes was assayed. Specific binding was increased by pretreatment with TNF (p less than 0.05), demonstrating that hepatic PM contains latent TNF receptors whose exposure is promoted by TNF. Homologous up-regulation of TNF receptors may, in part, be responsible for sustained hepatic responsiveness during chronic exposure to TNF.




Return to Cytokine Receptor Binding Kinetics References