Location: ELTE TTK É-4.51 / Rényi Kutyás

Literature:

[1] Schottenloher, A Mathematical Introduction to Conformal Field Theory

[2] Segal, The Definition of Conformal Field Theory

[3] Frenkel, Lectures on the Langlands program and conformal field theory

[4] Francesco et. al., Conformal Field Theory

[5] Frenkel, Ben-Zvi, Vertex Algebras and Algebraic Curves

Tentative schedule for 2014/15/2:

Date |
Speaker |
Topic |
Reading |

Jan. 6 |
Gábor |
2D CFT, OS Axiom |
[1] Ch 9 |

Jan. 13 |
Gábor |
Ward Identities, Energy-Impulse
Tensor |
[1] Ch 9 |

Jan. 20 |
Gábor |
OPE |
[1] Ch 9 |

Febr. 3 |
Ádám |
Operator Algebra |
[4] Ch 6 |

Febr. 10 |
Ádám |
Conformal Vertex Algebras |
[1] 10.5-10.6, [5] Ch 2,3 |

Febr. 17 |
Gyula |
Modules of Vertex Algebras | [5] Ch 5 |

Febr. 24 |
Gyula |
Bundles of Vertex Algebras | [5] Ch 6,8 |

Febr. 27 |
András Szenes |
||

March 3 |
Gyula |
Conformal Blocks in Vertex Algebras | [5] Ch 9 |

March 6 |
Bence |
CFT on the Torus |
[4] 10.1, 10.2 |

March 10 |
Peti |
Fusion, Verlinde-formula, Modular Invariance |
[4] (10.6?) 10.7, 10.8 (8.4?) |

Spring Break |
|||

Richard Szabo |
|||

Apr. 21 |
Szilárd |
Affine Lie Algebras and their Representations |
[4] Ch 13,14 |

Apr. 24 |
Gábor Takács |
WZW I. |
[4] Ch 15 |

May 8 |
Gábor Takács |
WZW II. | [4] Ch 15 |

May 12 |
Péter Vecsernyés |
Fusion Rings, Modular Categories | [2] |

May 19 |
Péter Bántay |
Modular Representations |
[2] |

May 22 |
László Fehér | The WZW Hamiltonian System and its Reductions | hep-th/9912173 |

May 26 |
Szilárd |
Moduli of Vector Bundles and Theta-Function I. | |

May 29 |
Szilárd |
Moduli of Vector Bundles and Theta-Function II. |

Schedule for 2014/15/1:

Date |
Speaker |
Topic |
Reading |

Sept. 16 |
Bence |
Conformal
Transformations and Conformal Killing Fields |
[1] Ch 1 |

Sept. 23 |
Keon |
The Conformal Group |
[1] Ch 2 |

Sept. 30 |
Péter |
Central Extensions
of Groups and Lie Algebras I. |
[1] Ch 3 |

Oct. 7 |
Péter |
Central Extensions of Groups and Lie Algebras II. | [1] Ch 4 |

Oct. 14 |
Szilárd |
The Virasoro
Algebra and its Representation Theory I. |
[1] Ch 5 |

Oct. 21 |
Szilárd |
The Virasoro Algebra and its Representation Theory II. | [1] Ch 6, [2] Ch 2 |

Oct. 28 |
Szilárd |
The Virasoro
Algebra and its Representation Theory III. |
[1] Ch 6 |

Nov. 4 |
Zoltán Bajnok |
String theory as a
CFT |
[1] Ch 7 |

Nov. 11 |
Gábor |
Axioms of RQFT |
[1] Ch 8, [2] Ch 3 |

Nov. 18 |
Gábor |
2D CFT |
[1] Ch 9 |

Nov. 25 |
Ádám |
Vertex algebras I. |
[1] 10.1-10.4 |

Dec. 2 |
András Szenes |
The Verlinde
Formula |
[1] Ch 11 |