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This is the first of two papers in which we determine the mod(2)
cohomology of the sporadic group O'N of order 2°3*57%111931 =
460, 815, 505, 920. O’N has 2-rank three, and, from the Gorenstein—Harada
Theorem [GH], together with the results of [AMM, FM, M1, We], which
determine the mod(2) cohomology rings of J,, M,,,G,(g), D,(¢), with g
odd, there now remain only the Chevalley groups U,(8) and Sz(8) among
the 2-rank three simple groups for which the mod(2) cohomology ring has
not been determined. In what follows we often use the Atlas notation [Co].

There are two maximal 2-local subgroups in O'N, Alp; = 4° - L;(2),
which is the non-split extension of the form

1 -4 5 Alpl - Ly(2) — 1

studied by Alperin [Alp), and the centralizer of an involution, the non-split
extension 4-L,(4):2,. They can be chosen to intersect in a subgroup
H, = K,: & where K, = 4%: 2% In particular, their intersection contains
a Sylow 2-subgroup. (The B denotes a particular element of order three in
the .y C Alp3 which normalizes K;.)

* Both authors were partially supported by grants from the National Science Foundation
and the first author was also supported by an NSF Young Investigator Award and the
ETH-Ziirich.
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In order to obtain cohomology results we have to get very precise
information about the conjugacy classes of elementary 2-subgroups and
their centralizers in O’N. Here is our first main result, sharpening results
of O’Nan [ON] and Yoshiara [Yo]:

THEOREM A. (2) There are two conjugacy classes of maximal elementary
2 groups in O'N, both isomorphic to 2° with centralizers 1 =4 and
Il = 4 X 22 respectively.

(b) The Weyl groups of the two conjugacy classes' are the general linear
group L (2) for the first class and % for the second. In the second case there
is a particular choice for the subgroups 4 and 2* so that the 4 is fived by &,
and, at the same time, there is a subgroup %, C.%*, which acts as L(2) on
the subgroup 2°.

Remark. (b) is contained in [ON, Yo), but (a) requires the very detailed
information about the structure of the Alperin group Alp; contained in
[Gr], and much of this paper is devoted to the proof of (a). Indeed, we
completely determine the poset space #,(O’N) of 2-elementary subgroups
and inclusions and show in Section 2 that the quotient of its geometric
realization under the action of O’N induced by conjugation has the form of
a two-dimensional complex:

NP
1"5.

Sylz(O'N)

Syla(O'N)

(8%.4x2%)2

(4x32)8,

(3*.4x Ay)-2 4% . Ly(2)

(4x2%)Ss 43.5,

(4x22).8  Gx2)Da 4.8,

The groups in boxes are the isotropy groups of faces and the labels in
smaller type are the isotropy groups of edges.

In Section 4, using geometric interpretations of results of Webb [Wel,
we derive a very useful consequence of the result above:

THEOREM B. Let I" be the amalgamated product Alp3 * H, 4-Ly4)2)
and w: I' — O'N be the surjective homomorphism induced by sending Alp2
and 4 - Ly(4): 2, isomorphically to the subgroups of O’'N which intersect in

! Following the custom among topologists, it H C G is an abelian subgroup of G then
Ng(H)/Ci(H) is called the Weyl group of H in G. Group theorists often call this the
automizer of H in G.
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Hyg; then the induced cohomology map
m*: H*(O'N;F,) - H*(T';F,)

is an isomorphism of rings.

Remark. This is very similar to the situations for M,,, G,(q), and
*D(q) where similar surjective maps of amalgamated products induced
isomorphisms in mod(2) cohomology. Similarly, a sporadic geometry en-
abled us to write the classifying space for M,, as a union of classifying
spaces of three subgroups amalgamated over the classifying spaces of their
respective intersections in [AM2]. However, in that case the generalized
amalgamation turns out to be isomorphic to M,,.

Next we turn to the structure of H*(O’N;F,). In Section 1.6 we show
that Syl,(O'N) has seven conjugacy classes of 2%’s, and in Section 3 we
begin the determination of the cohomology ring by describing the exact
structure of the fusions of their centralizers in O’N. Thus, we construct
explicit fusions which fuse them into two conjugacy classes.

In Part II of [MZ2], it is shown that restriction to the seven centralizers of
these 2%'s is injective in mod(2) cohomology for H*(Syl,(O’N); F,). Thus,
using the Cartan-Eilenberg double coset formula, the elements in
H*(Syl,(O’N); F,) which are in the image from H*(O'N;F,) are precisely
those elements whose images are fixed under the Weyl groups of the
centralizers, as well as under the fusion identifications. In particular, we
have

CororLary C.  The two restriction maps in cohomology

)L](z)

res' ® res'': H*(O'N; F,) — H*(4°;F, ® H*(4 X zz;uzl)'j;

together are injective in cohomology where | and 11 are the centralizers of the
two conjugacy classes of 2%’s in O’N and are discussed in Theorem A.

The invariant subrings in Corollary C are given as follows. Recall that
H*(43§ [Fz) = [Fz[bz( 1),5,(2),5,(3)] ® E(e (1),€(2),¢e/(3)),

the tensor product of a polynomial algebra on two-dimensional generators
and an exterior algebra on one-dimensional generators® and that the
e(i)’s and the b,(i)s are related by the Z/4-Bockstein, B,(e,(i)) = b,(i),
i = 1,2, 3, which extends as a derivation to products. The action of L,(2) is
the usual one induced from the linear actions on the one- and two-dimen-

‘A subscript on a generator in this paper will always denote its dimension.
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sional generators, so from the results of [Mui] we have that the ring of
invariants has the form

Foldy.dydy )1 By M, My, Xy, My, X X
where the d; are the Dickson elements in F,[b,(1), b5(2), b,(3)],
dy = b,(1)" + b,(2)" + b,(3)°

+ b,y (1)°5,(2)° + by (1)°5,(3)" + b,(2) by(3)°

+ by(1)b2(2)b5(3)(bo(1) + by(2) + by(3)),
while

diy=8q°(dy),  diy=59°(dpy),  Ej=e(1)e(2)e(3),

M, = B,(E;) = by(1)e,(2)e,(3) + e,(1)b,(2)e,(3) + e (1)e,(2)b,(3),

M, = Sq*(M,) = by(1)*e,(2)e,(3) + e,(1)b,(2) ¢,(3)

+e,(1)e,(2)b,(3)°,

X7 = Bi(M,) = (b2(1)°b5(2) + by(1)52(2)")ei(3)
+(b2(1)°b5(3) + b,(1)52(3)7)e,(2)
+(b2(2)°b,(3)

+b,(2)b5(3)")ey(1),
M“,=Sq4(1v~16), X, =Sq4(/\;7), /\7,3=Sq2(/\;“).
We now describe the structure of the invariants for II. Recall that
fn";j(Gl X GyF,) = HX(G;F) & H*(Gy;F,), H'(G;F,) = Hom(G,F,),

e (E F,le] ifi=1,
(25F2) = E(A) ® Fy[by(V)] ifiz2.
Thus we have

H*(4 X 2% F,) = F,[by(A), by, 1] ® E(A))

where A € Hom(4 X 2°,F,) is the unique non-trivial homomorphism with
kernel 2* € 4 X 2%. The .%; action is described in Theorem A, so if ¢ is
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the generator of order four fixed by .% and x, y are generators of order
two, then the Klein group K = {a,b) <4.%; acts by a(x) =x + 2¢, a(y) =
y, b(x) = x, b(y) =y + 20, while an .} subgroup acts as L,(2) on {x, y).
Consequently, the %, invariants have the form

(Fa[b:2(2). 61, /1] ® E(A)) " = B[ Dy, dy. ds] ® E(A))
where d, = bi + b,h, + hi, d; = bih, + bhj, and Dy = by(A)* +
dib (A + diby(A).

As a final step at this stage, one of the irreducible real representations
of O’'N is used to determine the existence of a polynomial subalgebra
F,ldg, d,5, (7,4] c H*(O’'N; F,) and its image under restriction in
H*(4%F,) ® H*(4 X 2%, F,).

Next one applies the specific results of Part I1 of [M2] to determine the
exact image of H*(O'N;F,) in H*(Syl,(O'N); F,). We summarize the
table of generators and their restrictions to the seven conjugacy classes of
centralizers of 2%’s in Section 3, and from this we can read off the
generators of H*(O'N; F,).

The description of the ring H*(O’'N;F,) is given as follows. It has 12
generators, one in each dimension from 3 to 14: d,, M,, Y, M, Y., dy, Y.,
My, X\, di5, X5, and d,, with M,, M., M,, as the generators of the
radical. The action of the Steenrod algebra on these generators is given by

Sqd, = Y, Sq*(Ys) =Y,
Sq*M, = M,, Sqg* (M) =M,,,
Sq*(X;) = X4, Sq7(X11) = Xis»
Sq*(dy) =dyy,  Sq*(d;,) =dy, =d\; +dy(ddy + X)),
and the action of Sg' on the generators is given by the formulae
Sq'(Ys) =d3i,  Sq'(M,) =d:M,,  Sq'(Yy) = d; X,
Sq'(M,,) = M, X,, Sq'(X,;;) =d. X,

Sq' is zero on the generators which are not listed. Also, there are a
number of basic relations such as

dyd,y =Yid,y = Yyd, = 0,
YE=d X,  YE=dy(Xqdy + dyd,, + d5),
X} =di Xy, X = dy( X1 dy + Xqdyy + X5d5).

The best way to understand the structure of this algebra is to explain its
embedding into H*(4%; F,)"® @ H*(4 x 2%;F,)”%. The map on genera-
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tors is given by

d; = (0,dy),  X,= (X, didy), X, ~ (X,.did;),

My~ (M, Ady),  dy > (dg, Dy + d3), 12 = (diy, d3Dy + di),
Y, = (0,dydy), Yy (0,d3dy), Xy (X5, d3ds),

M, — (M, Adydy), My~ (M, Ad3d,),  dy, = (d,;,0).

Using this embedding of the algebra it is easy to verify the relations and
squaring operations above, as well as to write down the remaining rela-
tions. One can, for example, verify that the image of the subalgebra
F,ld, dy, d, X1, Ys, X5, Yy, X,, X;3) in the second factor is an injection.’
In particular, the image is free over the polynomial algebra on d,, d,, and
d,,. Moreover, if we look at the part generated by M,, M, and M,, over
this algebra, which we denote .o, we get a short exact sequence of modules

0- [F:[dz’dx"llz]“«ys»X7,Y9aXlnX13)M4 -
- F,[dy. d\ (M. M,,) - 0.

But the extension is non-trivial, d-M, = Y;M,, d:M,, = Y, M,, as is
quickly verified by checking restrictions—for example, the restrictions of
both dyM,, and Y, M, are (0, A,d>d5)—s0 we can rewrite ./ in the form

v = le[d3,d8,d,3](M4, M My, XoMy, X (M, X5 M,).

Similarly, if we look at the image in the first factor, it has the form
F.lds, dl:’du](l’ M4, Mm X7’ Mnn Xus /\;13’ dl4E3)

where the last factor, d, E,, is the image of X;M,, = X, M, = X|;M,.

Remark. Quillen proved that the minimal primes in H*(G;F,) are in
one-to-one correspondence with the conjugacy classes of maximal elemen-
tary p-groups in G, the correspondence being given by associating to each
such group the kernel of the restriction map in cohomology to the
polynomial subring of H*(E,,; [Fp) [AM, Chap. IV]. In the case of O'N
there are exactly two minimal primes, corresponding to the two 2%’s, &,
and .. The quotient by the first is simply F,[dy,d,,,d,,], but the

quotient by the second is

Foldy. dy. d J(1Ys, X5, Y0, Xy, X)),

* When we write for example (A4, B,(), this denotes an algebra which is free as a
module over 2 on the three generators A, B3.C.
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and this integral domain is not closed in its quotient field since d, is integral
over it, being a root of the monic polynomial x® + dyx* + (d\; + d3) = 0,
but is not contained in it.

H*(O'N;F,) /%, is the first example with this property that is known to
us.

Remark. The Sq' structure described above, following from the map to
H*(4 x 2%;F,)”, gives the E, term of the Bockstein spectral sequence
which explores the higher 2-torsion in H*(O’N; Z) as the cohomology of
H*(O'N; F,) with respect to Sq'. (This makes sense since (S¢')* = 0.) The
result is

E, =Fo[ds, dp (1, d5, My, X5, Xy, X (M)
& D:Z[dX’ d12’ dl4]dl4(1’ M47 Mé’ X'/" MH)’ XH’ Xl3’ M4X13)’

where the second line is the contribution from the group H*(4*;F,) and
the first line comes from H*(4 X 2%;F,). Next, using our knowledge of
the Z/4 Bockstein in H*(4”;F,) we sec that E;, which is given as the
homology of E, with respect to this Z/4-Bockstein, comes from the
following differentials:  B(d{, Ey) = di,M,, Bid M) = d,, X,
Bd M) =d X, and B,(d,,X,y) = di,, while d\, either goes to zero
or X, M. It follows that the £, term has the form

[Fz[dxsdn](l’dz’M4»X7sX11’d|4’X||M4ad14M4),
or

Faldg, dp J(1dy My, Xq, Xy, d iy My).

We do not know the structure of the higher differentials, but it is clear
how they must work: the role of X, is to hit dy, that of X, is to hit d,,,
d, must hit M,, and d,;M, must hit X, dy + X;d,,. The only question is
at what level these differentials appear.

The Poincaré series for H*(O'N; F,) is given as
(1+x)(1+x° +x7 +x7 +x" + 1) x® +x"
G S )
A A T A X )
(1= x)(1 —x")(1 —x")

where the third term corresponds to the elements in the minimal prime
Py = (d,). The rational function above cxpands out as

+

f ol e ™ 2 T 10 35 ™ 24+ 24
2 e 2 3 T F 20 T Y+

(1 —x)(1 =x™(1 —x")
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and, with denominator (1 — x®X1 — x"X1 — x*), as

f(x)
(1 —x®(1 —x)(1 —x')

where f(x) is the symmetric polynomial of degree 31,

1+ x4 x4+ 2x 4 20 4+ x4 3x 4 3x? 4 3470 4 3xW
+4x® + 3017 + 4x™ + 40 + 3™+ 4x7 + 30 + 3xM
+ 3"+ 3+ X F 27+ 24+ x4+ L (*)

The reason for the expression ( =} above is that we believe H*(O’N;F,) is
freely and finitely generated over F,ldg, d,,,d,, + w), for some w con-
tained in the ideal (d;,Ys,Y,,...) of elements which project trivially into
H*(4%F,), so () gives a specification of the dimensions in which the
generators should occur. Moreover, (*) indicates the strong likelihood of
the existence of a Poincaré duality space or manifold of dimension 31
which reflects many of the properties of O'N if, indeed, H*(O'N;F,) is
freely and finitely generated over the polynomial ring above.

We thank R. Lyons for his help with the subgroup structure of O’N. We
also thank the referee for his remarkably careful and thorough reading of
our initial manuscript.

1. THE 2-LOCAIL STRUCTURE OF O’N
Denote by Alp! the split extension
1> (2") = Alp! = L,(2) = 1 (1.1)
and by Alp? the non-split extension
1= (2")" > Alp2 - Ly(2) ~ 1

where in both cases L.(2) = GL4(F,) acts on 2*  (2")? in the usual way.
These are the Alperin groups first introduced in [Alp], which are uniquely
determined and play a critical role in the classification theorem for
sporadic simple groups. Specifically, Alp; is a maximal subgroup of .o, =
L ,(2) of odd index. Also, Alp? is a maximal subgroup of G,(g),’D,(g) for
g odd, and is of odd index if ¢ =3,5 mod(8). Let HS denote the
Higman-Sims sporadic group. Then Alp} is maximal and of odd index in
HS. Additionally, the Sylow 2-subgroup of Alp; is the Sylow 2-subgroup of
the Mathieu group M,,.
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At this point the obvious question arises: does there exist a finite simple
group G with Syl,(G) = Syl,(Alp3)? O'Nan [O N] gave a positive answer
to this question, characterizing the sporadic group O’N as the unique
simple group having this Sylow 2-subgroup. [ts existence and uniqueness
were later verified by Andrilli and Sims [A]. O’N has order 2°-3*-5-7%-
11-19-31 = 460, 815, 505, 920.

In this section, we describe the 2-local structure of O’N, as this is what
we need for the cohomology calculations. The following proposition com-
bines results of [ON, Yol.

PROPOSITION 1.1. (1) O'N has only one conjugacy class of involutions
{j>. The centralizer of j is the group 4 - L.,(4).2,

(2) O'N has exactly two conjugacy classes of maximal subgroups of odd
index Alp; = 4° - L(2) and 4 - L,(4).2.

We will show shortly that the two subgroups above, Alp3 and 4 - L,(4).2,
intersect in a common subgroup Hy of order 2Y -3, so O'N contains the
configuration

4-L:(4):2, Alp3 (1.2)

Hﬁ
which completely controls the cohomology of O’N.

The Sylow 2-Subgroup of O'N

The group Syl,(Alp3) (i = 1 or 2) has a presentation with five genera-
tors ¢, 5, U3, 8, and ¢, so that (v, 0,5, 0,y =(Z/4)% t* =1, and the
remaining relations are given as

(

soysTl=0,,  stasT =1y, stysT!

=05 'y,

wit=0vy",  wy=v;', wy=vy', tst=s5" (1.3)

L in the case of Syl,(Alp3),

1 in the case of Alp}.

It is pointed out in [Alp] that Syl,(Alp3) is a rank 3 group. To obtain the
structure of the Sylow 2-subgroup of Alp! for n > 2, i = 1,2, nothing
changes in the presentation above except that v, v,, and v, now generate
a group (2").

We also need the structure of the conjugacy classes of elements of order
two, and the elementary two groups in Syl,(Alp?). The following two
results are from [ON].
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LEMMA 1.4.  There are seven conjugacy classes of involutions in Syl,(Alp3).
Representatives and the centralizers for these representatives are given in the
following table.

Class Representative Number in class Centralizer
A rir'g 1 (1'1,1'2,1'3,.v21>
B rirs 2 {0y, 09,09, 85, 81
C 3 4 oy ta, 05, 1)
D steg! 16 (e, eiedster
E st 32 (eqey L eded, sty
F t 16 ey Les sfor e
G 1, 16 ey L ed st e, iy
LEMMA L5. (i) The centralizer of s>vy ' = {v\v5, vivs, s7v] ', t) is iso-

morphic to 2 X (4+ D) where 4+ Dy is the central product.

(ii) The centralizer of t = {v,y ', 03,570, ', 1) is also isomorphic to 2 X
(4% Dy).

(iii) The centralizer of tv, = {v w3 ', v3, s7v0,05, t0,) is again isomorphic
t0 2 X (4% D,).

(iv) The centralizer of st = {v,v5 ', vivs, st) is isomorphic to 4 X (2)*.

From these lemmas it is direct to enumerate the conjugacy classes of
elementary 2-groups 2*  Syl.(Alp3). We have

COROLLARY 1.6. There are seven conjugacy classes of elementary 2-groups
2% C Syl,(Alp3).
They have representatives as follows: from the centralizer of v,
I'=<{evi,e3,03), II =<(1*11'3)2,1?§,t>, nr =<(1'11'3)2,1'§,1'2t>;
from the centralizer of st,

IV = < ( lvll'3)2!(vll"2)2a 5f> ;

and from the centralizer of s*v| !,

v =<("|l'3)2’(1'1l'2)2s521‘1‘ ]>’ VI =<(”|l"3)2a”1“3fa521"f l>’
vII' =<(L',1'3)2,t,szz',‘]>.
Proof. The listing of the possible conjugacy classes of 2*-subgroups is

routine when we note that each subgroup will contain (z,;)%, and if it also
contains (2,';)* then it must contain an element in one of the remaining
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five conjugacy classes. Consequently we need only list the 2%s in the
centralizers of these five elements and cancel those that are conjugate.
This is aided when we note that fs?v, ! = stv,s~', which directly implies
that the three 2*’s which arise from the centralizer of v, are listed in the
groups for r3 and s?v;'. It is also helpful to note that the group
((e,03)%, s*e5 ", 1) which occurs in the centralizer of f is conjugate to

{0 v yeqt, s2e; ") under the action of s*. |1

Remark. We use the primes in our labeling of the conjugacy classes of
elementary 2-subgroups above, since we reserve the unprimed groups
ILI,.... VIl to denote the centralizers of the groups above. Thus I =
(vy, vy, 030, = {ewy' ei6), and so on. Except for 1, each of the
centralizers is a copy of 4 X 27,

The following result is very helpful in analyzing H*(Syl,(O’N); [F,) since
the cohomology rings of the dihedral groups, D,..:, and wreath products
are well understood [AM, Chap. IVI].

PROPOSITION 1.7.  The subgroup {v,v,y = 4 is normal in Syl,(Alp3) with
quotient

Iy, = Syl,(Alp}) /<eyvy) = Dy 2

where Dy is the Dihedral group of order 8.

Proof.  {vyv;) < Syl,(Alp?) since sv,vqs™' = vy, st = (0w~
The quotient is obtained by adjoining the relation 5 = v7'. In particular,
s* = 1 so the projection I, = D, sending v; to 1 for i = 1,2 is split, and
we can write I, as the semi-direct product

I,=4%:D,.

We can write Dy = 2 \ 2 with (¢, s%t) being the 2> € 2%: 2 = 2\ 2 while
the element acting to interchange them is st. Also, t commutes with ¢, in
I, while tw,t =v5', s*was™ =s?vys 2 =vy =0, and s*tw,ts7? =

—1.-2

steylsT? =, 50
4%:{t,5%ty = Dy X Dy
= (v, 1) X vy, s71).
Finally, (st)> = 1 and

| -1

Ly —p-! =
stuytsT o =sv5 s = Uy = Uy,

so st acts to interchange the two copies of Dy above and the proposition
follows. 1
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Remark. The group Alp? is not the centralizer of an involution in O'N;
that is the extension 4 - L,(4): 2,. In particular, from [ON] we have that the
quotient group L(4): 2 of the involution centralizer has the group
Syl,(Alp3)/{v,v3v; ") as its Sylow 2-subgroup, and this group is not the
quotient analyzed above nor is it isomorphic to it. Indeed, [ON] shows that
there are precisely two conjugacy classes of elements of order 4 in O’N,
the first represented by ¢ v, and the second by v,v3e;!, and it is this
second which represents the 4 in 4 - L,(4): 2,.

Remark. In the table in Section 3 where the generators of
H*(Syl,(O'N); F,) are listed, the elements e, e,, e,, I'(x), o,, V3, and
I'(w) all come from H*(Dy \ 2;F,) under the induced cohomology map
for the projection above.

The Explicit Structure of Alp3

Partly in order to understand the fusion in O’N, but also to understand
the configuration 1.2, we now give an explicit set of generators for Alp3
following an article by Griess [Gr], where he constructs Alp? as a subgrouS

of Aff(Z/8) < GL,(Z/8) consisting of matrices of the form (ll/ l(;

where W e GL,(Z/8) and V is a 3 X 1-column vector. In particular, the
subgroup {u,,',, 13, is given as the subgroup of GL (Z /8) of all matrices
1o
Vo
3 % 1 column vector with even entries.

The upper-triangular matrices in GL,(2) give a copy of the 2-Sylow
subgroup so we look in those tables for elements W which when reduced
mod(2) give upper triangular matrices. Explicit generators for the 2-Sylow
subgroup corresponding to the generators we have been studying can be

given as

of the form where /5 is the 3 X 3 identity matrix and V' is any

1 0 0 0 1 0 0 0

1 1 2 2 1 7 6
! & s 5 &

2 0 1t 4 2 6 1 7

7 o 7 5 4 4 7

With respect to these choices for s, t, we find that a consistent choice for
vy is

[oXNe N
o —=O
OoS= oo
-0 o O
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so, since ¢, = st'ys~ ', vy = 5% s %, we find that representatives for the
generators ', ', are given by*

[
[\SE el
oo = O
e
- o O
O -
cCc—C
S =0 o
-0 O O

We record the representations of the elements s, s°, and fs5°:

10 0 0 1 0 0 0
s |35 27 2o |0 3 61
0 6 1 3] 3.0 7 4f
2 4 4 1 0 0 4 5
100 0
o ld 51 s
5070
70 4 3

Next we need two clements, «, 8, of order 3, for which the W terms

restrict mod(2) to
0 1 0 1 0 0
I 1 0 and 0 0 1

0 0 1 0 1t 1

respectively. These matrices «a, 8, together with the elements above, must
generate the entire group Alp3. Suitable choices are

1 0 0 0 1 0 0 0
7 4 3 0 0 1 4 0
ey 1 o3 2l B2l7 0 4 3 (1.8)
0 4 0 1 6 2 1 3
Then

1 0 0 0 1 0 0 ©

a ! o 7 3 5 6 g o 4 1 4 4
7 7 4 0} 5 6 3 5
4 4 4 1 7 0 7 4

* This model for Alp3 is not quite the model in [ON), as it reflects the topologists’
preference for left actions instead of right actions. In particular, in this paper conjugation of
xbyais axa”' and not, as is more usual with group theorists, a 'xa. We also use the

notation a(x) for axa™'.
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LEMMA. 1. Let K, = (v, ty,v4,05,57). Then a normalizes K, with
action a(s*) = (v,0,) ' osts?, alts) = (00y) 7 oys?, ale) = o (00) 7",
alvy) = vivy!, and a(vy) = v 03, Also tat = o',

2. Let Ky = (U, Uy Uy s2%. Then B normalizes Ky with action B(t) =
ey 'ts?, B(s?) = (0,057 ', Bley) =ity Bloy) =v;', and B(r;) =
vavy ', while tsBts® = g1,

Proof. 'This is a direct calculation. For example, we have

10 0 0)ft 0 0 0){t 0 0 0©
el |7 4 3 00 3 6 11[7 3 5 6
4 1 3 2013 0 7 4]17 7 4 0
0 4 0 1/lo 0o 4 s5/\a 4 4 1
1 0 0 0
_|7 7 0 0
302 7 1
4 4 0 1

and, in turn, this is seen to represent v;v;e,ts’. Next we find

atsa™ ' <>

AN~ N -
SO WwWO
A NO
N o=

which is the image of (¢,0;) 1, s%. Also, it is direct to check that rat = ™!,
and we have

1 0 0 0 1 0 0 0
o 21 0 0 o la 10 0
el 01 ol %Y o o0 1 o)
6 0 0 1 2 0 1,
1 0 0 0
) 6 1 0 0
avsa”t e |50
6 0 0 I

B 30
! ! =i

Consequently, av,a” ' =¢wie], av,a™' =vivi, and ev,a
Thus, the action of « on the subgroup of Syl,(Alp3) which it normalizes is
completely determined.
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We also check directly that tsBts* = B~ It remains to determine the
action of B on the subgroup it normalizes. We have

1 0 0 0 1 0 0 0
- 4 5 1 5 2 1 1 7 1 2
PIE=ls o 7 o BB e 4 0 1 4
1 0 4 3 7 0 0 7
while
1 0 0 0 1 0 0 o
g1 L1210 o0 g1 l0 1 0 0
POBT 1S 0 1 of BuBte 6 0 1 o
4 0 0 1 2 0 0 1
1 0 0 0
a0 1 0 0
PraBiedy o 1 o
4 0 0 1
Thus we have the action of B on {t,s% v, 0,, vy first, Bu, B! = vyl

and B, B =i, Bu, Bl = vv3 ' second, Brg! = v 's%; and third,
BsB ' =(v,0)7 't

Remark.  The action of « on {vy,v,,05) splits as a trivial action on
4 = (viv,wd), and an action on 42 — Cewwi'ei,e ;") where

arwy 'via = pgt, avwyla™! = ((1111,{'L'\f)(ulu;‘))fl.
We have {t, a) =.%} and
H,={t, a,ts, ST 00y, 0,) = K,: 5. (1.9)
Similarly, (5%, B) =.%, so
Hy = (ts",B,t,sz,z',,uz,z’3) =K;: ¥, (1.10)
Also, for both H, Hp, the quotients by (v, vy, U3) are copies of .%;. Note
in particular that Bu,v, B! = vy ' so Blow,)B ! = (v,04)* and, since
4-L;(4)- 2 is the centralizer of (v,03)* in O’N, we have
AlpiN4-Ly(4) 2= H, =4,

Remark 1.11. When we project K, t0 SyL(O'N)/(v\13), we get that 52
acts to invert every element of (o, 0, 03) /010, = 42, while t5 acts to
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exchange the two generators. But this is the description of Syl,(M,,) as
given, for example, in [FM]. This observation will be crucial in the
calculation of H*(Syl,(O’N); F,) given in [M2].

A Key Fusion in Alp3

In Section 2 we will see that there are exactly two conjugacy classes of
rank 3 elementary abelian 2-subgroups in O’N. For this we will need the
following lemma describing a specific fusion in Alp3.

LemMMA 1.12. In Alp; the groups {((v,v3), (vyey)?, s*ey'y and
(0303, (00,)?, st ), both isomorphic to 2°, are conjugate.

Proof. Take the element « € Alp; of order 3 described in (1.8). Then

a(vwy) e = (efeded)(ef) = (ear3)”

a(vwy) et = (efeded)(e3) = (vwy)’

a(s*ey)a™' = z',“‘1';11*3ts3(z'1L*2_11';')_1

1 1

Now ¢ 'ey Moyt) = vy ey 'Dey ! = (o7 " o,e ! = wae,ey ! and

s*or o) = (l'z(l’l"'a)ill'llr'z)s3 = (L'lL’f)("nL’3)_ls3 = (vye3)s

SO

I — — - — —
as*o;y Nt =07 ey egste oy,

— - — —
= (v ewis T =gy s
=ts7"(vy'v)) = sy’

= uyu5ts°,

Now we have

(Ull'z"s)sz(a(sz“rl"_l))siz(ull'zl'z)‘l = st,

and (1.12) follows. |

Remark. We will exploit this fusion further in Section 3 when we
describe the necessary and sufficient conditions that an element in
H*(Syl,(O’N); F,) be in H*(O'N); F,).
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2. THE LATTICE OF ELEMENTARY ABELIAN
SUBGROUPS IN O’N

In this section we describe the lattice of clementary abelian 2-subgroups
in G = O’N. Our main sources are the Atlas [Co, ON, Yo] and a private
communication from Lyons [Ly]. To begin, we have

THEOREM 2.1.  There are exactly five distinct conjugacy classes of elemen-
tary abelian 2-groups in G = O’N described as follows:

Group Normalizer Order of normalizer
Z=2 4-L(4)2, 161,280 = 2%-3%.5.7
v, = 2? 4, 1536 = 2°-3

v, =22 (374 x.w,) - 2 864 = 2% 37

E, =2° 4 LA2) 10752 =2-3-7
E,=2} 4 x 2% 384 =273

Proof. The fact that there is only one conjugacy class of involutions in
G with centralizer 4 - L{(4) - 2 appears in O’Nan’s original paper [ON]. The
presence of exactly two distinct conjugacy classes of Klein groups is
Lemma 3.1 in [Yo]; the normalizers of V|, V, follow directly from the
discussion there.

Finally, in Lemma 3.2 in [Yo] it is proved that there are at most three
distinct conjugacy classes of 2° in G, and that the 2-rank of G is three.
The representatives for these subgroups can be taken to be (using the
notation from Section 1):

2,2 ,.2 — 2.2 ,,2,,2 2,1
l,=<l‘|,lz,l‘3>, V’_<I|L‘3,[‘|U2,s l‘l >,

2 2 2 2
V' = {eieg.o0e;, st).

(Note that in [Yo] it is shown that I' and V' are not conjugate.) However,
from our analysis of 2-fusion, (1.14), it follows that, in fact, IV’ is conjugate
to V'. The structure of the normalizers appears in [ON] as well as [Yo]. |

From this information we will now construct a simplicial complex
associated to this lattice. We recall its definition: consider the partially
ordered set of 2-elementary abelian subgroups in a finite group G, de-
noted by #,(G). Denote by |#,(G)| the simplicial complex associated to it;
its vertices are the elements of #,(G) and its simplices are the non-empty
finite chains (under inclusion). These complexes were first introduced by
Brown [B] and then studied by Quillen [Q]. They have a G-action induced
by conjugation.
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Remark 2.2. In previous cases, such as the analysis of M, in [AMM]
and the analysis of G,(q),’D,(g) in [FM], these poset spaces have allowed
us to reduce the determination of H*(G;F,) to the analysis of a fairly
small number of subgroups and their common intersections. As we will see
in Section 5, this is also the case here. However, it turns out that in this
case it is at least as hard to determine the cohomology of the subgroups as
it is to study H*(O'N; F,) directly. This is similar to what occurred in our
study of M,, [AM2]. But, regardless, as we see in Section 4, the structure
of |#,(O'N)|/O’'N will give us an important connection between the
classifying space for O'N and a union of two classifying spaces over a
common intersection which holds out the hope of understanding some of
the implications of the existence of O’N in homotopy theory.

We now describe |.#,(Q’N)|/O’N.

THEOREM 2.3. [&,(O’N)| is a two-dimensional complex which, up to
conjugacy (the action of O’N), has five vertices, eight 1-cells, and four 2-cells.
The following is a list of conjugacy classes of flags with their normalizers:

Flag Normalizer Order of normalizer
(Z,V) 43Dy 512 =12°
(Z,Vy) (32 4 x V)2 288 =27 32
(Z,E) 43 1536 = 2°-3
(Z,E,) 4 x 2% 384 =273
(Z,E,Y (4 x 27)2° 64 = 2°
WV, E) 4% 1536 =2°-3
V. E)) (4 % 2%)-Dy 128 = 27
(V,, E5) @4 X V) -4 96 = 2%-3

(Z,V), E) 4% Dy 512 = 2°
(Z,V,E,) (4 x 22)- D, 128 = 27
(Z,V,, Ey) (4 x 22)-2? 64 = 2°
(Z,V5, E5) @ x VN 32=12°

Proof. 'The first four on the list are clear. The fifth one occurs because
N,(E,) does not act transitively on the seven subgroups of order 2 in E,;
there is an orbit with six elements and a fixed point. In [Yo] it is proved
that no conjugate of V, lies in E,, explaining the absence of (V,, E,) and
(Z,V,, E,|). The rest are then clear from these arguments. |

l.2,(O’N)] is a two-dimensional CW complex with 2,079,117,579 vertices,
19,900,669,640 edges, and 26,100,878,270 faces. Hence x(l#,(O'N))) =
8,279,326,209 = 1 mod(2°). The pictorial representation of the orbit space
L2, (O’N)I/O'N can be found in the Introduction.
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3. THE DETAILED FUSION STRUCTURE FOR THE
MAXIMAL ELEMENTARY SUBGROUPS

Each of the seven centralizers of maximal elementaries of (1.6) except
for VI and VIl is in a known conjugacy class in O’N: it is either that of | or
II. We now show that one of the remaining two classes is conjugate to a
subgroup of I and the other is conjugate to 1.

In [AM1] a homomorphism ¢: (v, 15, U5, 2, 5%) — Syl,(L;(4)) was given
with kernel (¢,07 ' ¢3). This homomorphism cannot extend to an injection
H, — 4-Ly(4): 2,, so we begin our analysis by giving a homomorphism
¢: Ky — Syl,(L(4)), with kernel (r0;'v3) which does extend to a
homomorphism from H, to Ly(4): 2|, the group L,(4) extended by the
“unitary involution” (see below). Set B8’ = 11, B. B’ is again of order three.
We begin the construction by setting

L 00
d(BY={0 ¢* 0
0 0 1

where { € F, is a primitive third root of unity and we are in the quotient
by the center L4(4), and not in SL,(4). We have H, =K;: 2, =
{s%,t,0,,0,,05): .73, and a convenient choice for the extending .} is

o= (v, oats?, B,

which makes H, explicit. Now remember that the element v]'v, 57 is
supposed to act on L;(4) via the unitary involution 4 — M(A 'YM™!

where M is the matrix
0 0 1
0 1 0},
1 0 O

so that when we specify the image of ¢, the images of all the remaining
generators in (v, v,, 3,1, 5%, B') are determined. Set

1 0 0
¢(6) =10 1 £,
0 0 1
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SO we obtain

1 0 1 0 ¢°

vi=lo 1 0], i=lo 1 o0
0 0 1 0 0 1
1 0 0 1 0 0

te |01 ¢, stey'—>]0 1 1}, (3.1)
0 0 1 0 0 1
1 £ 0 1 1 0
sPei=> o 1 ol vtwus'—|0 1 0}.

0 0 1 0 0 1

Remark. The choice for 8° was made because it was required that g’
should normalize {vv5't3,¢, 5%y '), the group VII associated to (1.6), so
the image of this group in L,(4) is the subgroup of matrices of the form

1 0 0
0 1 =].
0 0 1

A second, inequivalent choice is given by choosing B’ to normalize the
other group, VI = {v,v;'v? v,est, 5?0 '), and modifying #s* to an ele-
ment xts* with x € (¢}, t,,04), so {xts?, B') =7,

Anyway, with the embedding in (3.1), the image of {v,v; v, t,s%¢7 ') is
conjugate in 4 - L,(4) to the group

1 0 =
¢ {{0 1 0] =Cewited el b,
0 0 1

On the other hand, when we explicitly embed the remaining group

(o 'ed st ste) ') we find
1 0 1
, vestsfer - 001 1],

0 0 1

Ut

oSO =
S e O
—_— —

P

22

which has determinant det('g :)
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In particular, both groups are contained in the subgroup

1 0 =
dx Dyx Dy = (owy el el tsfe; D ~ [0 1 x| ©4-Ly(4),
0 0 1

which has the Weyl group .9. Since this action fixes vwy'e3, it is
determined on the centralizers of the maximal elementaries by what it
does on their images in the quotient 2% < L4(4), and each such image is a
2%, It was pointed out in [AM1] that there are 4 conjugacy classes of
2% c 2* = [ under this action of & = SL,(4), and they are distinguished
by the determinant of any two non-zero elements in 22 Thus,
(i ei, vy 'v3) has determinant 0 as does {vw; v, ¢, s%v; 1), and they
are conjugate. On the other hand, the determinant of (vlv_{‘ug,vg, t) is
also 2 so this group is conjugate to (v,v5 v, 0058, s?v7 ') as asserted.

This completes our analysis of the fusion in O’N. There are five
subgroups 2* in one class, with centralizers all equal to 4 X 2 while there
are two in the other class.

It remains to determine the explicit identifications of the six 4 X 27’s,
modulo the actions of their normalizers in order to make cohomology
calculations.

We note that (4+ D * Dy): & contains the normalizers in O’N of the
maximal 2-elementaries in II, III, V, and V1. The Weyl group .#; of each
centralizes ¢,v;'v3 and is generated by elements d, e, f, g with (d,e) =
22, (e, f> =.% inducing on II' = {a*, b, ¢) the following actions—where
we are writing @ = 0,03 '03, b=0vi, c =t;d:a* > a*, b~ ba’,c > c; e
a* = a’, b~b, c—ac, fra*—>a*, b>c,c—b; g a’—a’ b,
¢ = bc. (Since the normalizer of II' modulo Il acts faithfully on the
23-subgroup I’ fixing (1,04)?, it can be identified with a maximal parabolic
subgroup 2*: L,(2) =.%, c L,(2) and the claim follows.)

Thus the action is uniquely determined on II, 111, V, and VI. Moreover,
the fusions of these groups in 4 - L;(4): 2, are also clear, since v,v;'¢3 is
fixed by every element in 4% D, * D,: &. It remains to determine explic-
itly the fusion between IV and V. We have, referring to the calculations in
the proof of Lemma 1.12,

a(owy'o3) = of(res)
a((l'lL'z)z) = (”1“3)2,

a(sPvy') = vovats?,
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and conjugating by v,0,0,5% gives the explicit map

vwy'v: - vtvgw
W3 U3 2 UiULs,

(v402)" = (vs)’s

1

2 —
sTvy oot

Thus, the subgroup 4 fixed under the action of the normalizer of IV is
Coye; How®).

Finally, VII is identified with {v,0; '3, 03, 05) in 4% Dy * Dy: &/ by an
element which fixes ¢,; ' v, and this completes the explicit descriptions
of the fusions.

Now we recall one of the results of [M2] where the cohomology ring of
Syl,(O'N) is determined.

THEOREM 3.2. H*(Syl,(O’N); F,) is detected by restriction to the seven
centralizers of the seven distinct conjugacy classes of elementary two sub-

groups.
Consequently, we have

COROLLARY 3.3. Identify the five subgroups 11, 111, 1V, V, VI and
identify VII with (o5 e vi, 03) as discussed above. Then, v &€
H*(Syl,(O’N); F5) is in the restriction image from H*(O'N; F,) if and only if
its restrictions to these seven centralizers are all the same under these identifica-
tions and they belong to the invariant subrings in cohomology.

Remark 3.4. Of course the same techniques may be applied to the
groups Alp: and 4 - L,(4): 2,. For example, with Alp; the fusions are as
follows: B and « fuse II, III, IV, and V, but the remaining groups 1, VI,
and VII are not fused. Here the Weyl groups are Dy for I1, and L,(2), ./,
and &, for I, VI, and VII respectively.

Thus we get

COROLLARY 3.5. a € H*(Syl,(O'N; F,) is in the image from
H*(Alp3; F,) if and only if

1. Res'(a) € H*(I; F,)142,

2. Res"(a) = Res'''(a) = Res'V(a) = Res¥(a),

3. Res¥!(a) € H*(VIL; F, )",

4. Res¥''(a) € H*(VIL; F,)*.

Remark 3.6. The situation for 4 - L,(4): 2, is that [ is fused with VII,
while II, II1, V, and VI fuse with Weyl group .. But 1V is not fused with
any other subgroup. The Weyl group of I is also .#}.
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Further discussion of the actual cohomology of O'N is deferred to [M2].
However, we now record the generators of H*(Syl,(O’N);[F,) and their
restrictions to the seven conjugacy classes above from [M2].~

First, we have three polynomial generators dy, d},, and d;, which come
from the Stiefel-Whitney classes of a representation of O’N. (Note that
the first is indecomposable in H*(Syl,(O’N); F,) but the second and third
are sums of decomposables.)

The image of H*(4%F,) in H*(E;F,) is F,[x,(1)?, x,(2)*, x(3)*}, and
clearly

im(res*: H*(O'N; F,) » H*(E;F,)) Cim(res*: H*(4° - L4(2); F,)
"’H*(Eﬁﬂ:z))

2 21 La(2)
c Fy[x, (1) 2,27 0, (3]

By a well known result of Dickson,

F (D 0 @% 53] = Rl dh. a2, a3],
where
d, = x,(1)* + x,(2)" + ,(3)" +x,(1)°5,(2)x,(3) +x,(1)x,(2)°x,(3)
+x,(1)x,(2)x,(3)’,

d, = Sq*(d,), d; = Sq°(d,), and we have

THEOREM 3.7. The image under restriction of H*(O’N; F,) in H*(E; F,)
is exactly the algebra F,[d?, di,d3). Moreover, the image under restriction in
H*(E,; F,) contains a copy of this same algebra.

Proof. To obtain this result, we use the Stiefel-Whitney classes of a
representation. We recall a few basic facts. If O(n) is the n X n orthogo-
nal group over the real numbers, and p: G — O(n) is a group homomor-
phism, then the Stiefel-Whitney classes of p, denoted w(p) €
H'(BO(n),F,), are by definition p*(w,), where w,w,,...,w, are the
well-known symmetric polynomial generators for the cohomology of BO(»).
The total Stiefel-Whitney class is the formal sum W(p) = w(p)
+ -+ +w,( p). Note that W( p, ® p,) = W(p)W(p,). We refer the reader
to [MS] and [AM] for more on this.

In [Co] the irreducible representations of O’N and their characters are
given. We concentrate on x,, which has dimension 64790. Any element of
order 2 in O’N has character 70 under this representation. Moreover, the
representation is real. Hence, when restricted to E, or E,, the representa-
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tion has the form 70e + (8090)R where € is the trivial representation and
R is the regular representation. The total Stiefel-Whitney class of R is
1+d, +d, + d,, and consequently the total Stiefel-Whitney class of x,q,
when restricted to E, or E,, is

(1 +dy+dy+d)"™ " =1 +dl+d}+d}+dé+ .

In particular, in both H*(E;F,) and H*(E,;F,) the classes dj, d7, and
d; are in the image of restriction from H*(O'N;F,). Equation (3.7)
follows. §

We have included Table I describing the restrictions (on the generators)
from the cohomology of the 2-Sylow subgroup of O’N to the cohomology
of the centralizers of the seven distinct conjugacy classes of clementary
abelian 2-subgroups.

To illustrate the techniques, note that e, o, + e, I'(x), + Ly + 5, + I,
restricts to 0 at I, VII, while it restricts to d; at each of 1I-VI. Conse-
quently, it is in the image of H*(O'N;F,). Also, M, is directly seen from
the table to lic in the image of H*(O'N;F,). Since Sq°(d,) = d,d,, this is
also an element in the image, representing Y;. It thus remains only to
construct X,. But this is represented by

di(e} + (el +el)el + el + al) + 8, + LiT(w), + I'(x),S;.

It follows that H*(O'N; F,) is at least as large as asserted in the Introduc-
tion. To see that it can be no larger requires a close look at the possible
invariant classes in the restriction image in H*(I1V; F,). The only possibil-
ity which is not already in the image from H*(O'N;F,) is Ad3d;, but to
build this class requires I'(w), and by looking simultancously in H*(V; F,)
we see that this class cannot occur in the restriction image from
H*(O'N; F,). Further details will be found in [M2].

Remark. In a similar way we can construct classes in the image of
H*(Alp3; F,). For example, L + e, I'(x) is in the image, as is e} + ¢,e,. +

K
er.

4. APPLICATIONS OF A FORMULA OF WEBB

We will now apply a formula due to Webb [We] to the poset complex of
O'N discussed in Section 2. Let GG be any finite group, |#,(G )| be the poset
complex as above, and denote the rank of G at 2 by r(G). Then Webb's
result can be restated as follows (see [AM, Chap. V] for details). Let C’



TABLE 1
The Restriction Images of the Generators of H*(Syl,(O'N); F,) in the Seven Conjugacy Classes

Name: 1 11 111 v \% V1 vl
Group (g, Uy) Goed oy (aedeat) (et sty G2 ster D Growst, s2er D GotysterD

e, 0 h h h 0 b b
e, e(1) + e(2) + e(?) 0 h 0 h h h
e 0 0 0 h 0 0 0
I'(x), (e(1) + e(3e(2) 0 0 AR 0 0 0
o, b(1) + b(2) + b(3) S+ Ah S+ Ak 0 0 Ab Ab
v, R 0 0 0 d, + h% Ah(b + h) AR(b + h)
S, # 0 0 dy + h?A 0 0 0
Ly 0 AR? AR? 0 AR? M, + d;y M,
I(w), (b1 + B3N 0 0 B(AY? + B(AR? s? 0 0
M, M, Ad; A, A, Ad; Ad; 0
S5 g 0 0 hS? 0 0 0
Se v 0 0 ARS? ARS? 0 0
S, X, 0 0 N, N, 0

Note. We have not included dg, d,, and d,, in this table. Their restrictions have already been described in (3.7). As regards
the elements in the table we have used the following abbreviations: @ = (b(1) + b(3))e(2) + (e() + e(3NH(2), § = b(b + h),
N, = (dy + AhDS?, T = (e(1) + e(2) + eBNQXb(D) + bO3)), and #'= (b(1) + b(2) + bAOM, + Sg°M, = b(3Xb(1) +
b2e(1e(2) + bRXb(1) + b(3Ne(1e(3) + bXD2) + b(3De(2)e(3). For the groups 11-VII, the element b is dual to the
middle generator, €.8., u% in IT, 1II; A is dual to the third generator, €.g., / in II, v,¢ in 1I; A is dual to the first generator; and
B(A) = B(A). Also, j = vy vy and = vy I(p,v4)?. This table is set up so that the fusion of the various subgroups
preserves the form of expressions b —> b, h = h, and A = A. Finally, as usual, d; = h* + bh + b%, d3 = b%h + bh™.

(413
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denote the ith cellular chain group over F, of the G-CW complex |#,(G)};
then the coboundary map defines a cochain complex @*(g) = H¥(G, C*):
HY(G,C% - HY(G,C") - - » HY(G,C"9 1)
with H'(2(g) = 0if r > 0 and H%(2(q)) = HY(G).
In particular, taking Euler characteristics gives the formula

H*(G;F,) @ 11 H*(G,;F;) = 11 H*(G, ; F;)
€GN /G a6
i odd i even

where o; is a representative for an orbit of i-cells in |9%(G)|. For the
group O’N this formula simplifies drastically after cancellation and we
have the following

THEOREM 4.1. There is an isomorphism
H*(O'N;F,) @ H* (47 -5 F,) = H*(4- Ly(4): ;3 F,)
SH* (47 L,(2);F,).

We can draw several conclusions from the structure of the poset space
and its quotient.

THEOREM 4.2. The 2-local structure of O’N defines a surjective homo-
morphism, 7, from an amalgamated product to O’N,

w4+ Ly(4): 2, 540,47 - Ly(2) — O'N,
and 7 induces isomorphisms in mod(2) homology and cohomology.

Proof. By a theorem of Brown [B] and Webb’s formula we have an
isomorphism H*(lo,(O°'N)l Xon Eon; Fy) = H*(O'N; F,) where Eq.y is
the universal cover of the classifying space of O’N. Consider the projection

q: [#(O'N)| Xon Eon = |#,(O°N)|/ON.

The inverse image of every open simplex in |#,(O’N)|/O’N is the product
of that open simplex with the classifying space of the isotropy group of that
simplex, and this gives a decomposition of a space having the same
homology as O’N. Now, consider the leftmost triangle.

4. L;(4) :21

(3%-4x2%)2

(3'4x A,)-2

(4x2%)8,
(4x2%)S,

(4 x 22)'84
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Note that the top edge and the entire simplex have isotropy groups with
the same mod(2) cohomology. Hence, they cancel out geometrically as well
as algebraically, and we can remove the edge and the simplex. Note also
that the leftmost vertex and the lower edge also have isotropy groups with
the same mod(2) cohomology, and so we are left with only the right edge.
A similar consideration holds for the curved edge with isotropy group
(4 x 2%)2? which is exactly the same isotropy group as that of the
“curved” triangle, so the two cancel out. We may now cancel the lower
edge of the central triangle (with isotropy group (4 X 22)D,) and the
interior of the triangle. That leaves us with the edge with isotropy group
(4 x 2*).%, and the rightmost triangle with isotropy group Syl,(O’N). This
triangle cancels with its lower edge. The edge cancels with its lower vertex,
and finally the lower right-hand edge cancels with the vertex with isotropy
group 41%,. This leaves only the diagram

4-L(4):2, 4% L4(2). (4.3)

EIRRp2
4.y

Algebraically what we have is that the chain complex 2*(g) is homolo-

gous to the one-dimensional sub-cochain complex
Hi(4-Ly(4):2,) ® H(4’  Ly(2)) = HI(4" -4),

hence from Webb’s theorem we conclude that the sum of the restriction
maps is onto, and that its kernel is precisely H¢(O’N). On the other hand,
if we denote by I" the corresponding amalgamated product, the associated
Mayer—Vietoris sequence also implies that the kernel is isomorphic to
HI(I"). Consequently, by rank considerations and the fact that the finite
subgroups in I" are mapped isomorphically into O’N by the projection =,
we obtain the desired result. |

Identifying the kernel of the sum of the restrictions, we obtain

COROLLARY 4.4. H™(O'N;F,) is given explicitly as the intersection in
H*(Hg:Fy) of the images, im(H*(4-Ly(4): 2,;F,)) and im(H*(4"-
L;(2); F,),

H*(O'N;F,) = im(H* (4 Ly(4): 2,3 F,)) N im(H* (43 - Ly(2); F,))
C H*(Hg; Fy).
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