On the number of generators of an étale algebra

Abhishek Kumar Shukla

University of British Columbia

abhisheks@math.ubc.ca

02/20/2019
Notation

\(R \) is a commutative Noetherian ring containing an infinite field \(k \).

We begin the classical Forster-Swan theorem.

Theorem

Let \(R \) be a ring. Let \(M \) be a finitely \(R \)-generated module. Suppose for each maximal ideal \(m \), \(M \otimes_R R/m \) can be generated by \(n \) elements as an \(R/m \)-module. Then \(M \) can be generated by \(n + \dim R \) elements.
This theorem was vastly generalized by Uriya First and Zinovy Reichstein.

Theorem

Let A be an arbitrary R-algebra. Suppose A is a finite R-module. Finally, suppose for each maximal ideal m, $A \otimes_R R/m$ can be generated by n elements as an R/m-algebra. Then A can be generated by $n + \dim R$ elements.

1. If A is an algebra with trivial multiplication, recover Forster-Swan theorem.
2. If A is an étale algebra over R, then A can be generated by $1 + \dim R$ elements.
3. If A is an Azumaya algebra over R, then A can be generated by $2 + \dim R$ elements.
Question: Can we improve the bounds?

Answer: Not for modules.

Richard Swan produced examples of projective modules for which the upper bound is sharp.
Briefly, finite étale algebras are generalization of separable (field) extensions.

Standard Example: $R[x]/(f)$ over R where $f \in R[x]$ is a separable polynomial.

On an scheme X a finite étale algebra is a scheme Y and finite morphism $\pi : Y \to X$ such that there exists an affine open cover $X = \bigcup_i U_i$ such that $\mathcal{O}_Y(\pi^{-1}(U_i)) \cong \mathcal{O}_X(U_i)[X]/(f)$ where f is a separable polynomial.

Topologically, finite étale algebras are analogs of finite covering maps.

Diagram:

```
\begin{tikzpicture}
  \node (U) at (0,0) {$U$};
  \node (p) at (0,-1) {$p$};
  \node (p^{-1}(U)) at (0,-2) {$p^{-1}(U)$};
  \draw[->] (U) -- (p);
  \draw[->] (p^{-1}(U)) -- (U);
\end{tikzpicture}
```

Wordslaugh [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons
Is this upper bound optimal for étale algebras?

Theorem (_, Ben Williams)

For each integer $n \geq 1$ there exist a ring $R^{(n)}$ of dimension n and a finite étale algebra $A^{(n)}$ over $R^{(n)}$ that cannot be generated by fewer than $n + 1$ elements.
Idea of Proof I

Fix a degree t.

Construct a “universal” variety B^n_t which classifies étale algebras (of degree t) having a generating set of n elements.

$$
\begin{array}{c}
Y \xleftarrow{\text{closed}} \mathbb{A}^n \\
\downarrow \\
\downarrow \\
X \\
\end{array}
\quad \xrightarrow{\sim} \quad \text{Hom}(X, B^n_t)
$$

- Morphism to B^n_t is independent of the choice of generators.
- There exists natural maps $i_n : B^{n-1}_t \rightarrow B^n_t$.
- The maps $X \rightarrow B^n_t \rightarrow B^N_t$ are \mathbb{A}^1-homotopic for some $N >> n$.
Then for a suitable X there exists a morphism $X \to B_t^n$ such that it does not “factor” through B_t^{n-1}.

Obtain obstruction to generation by applying homotopy invariant functors. They include motivic cohomology or singular cohomology (if the base field is \mathbb{R}).
Thank you for listening!
Consider the $C_2 = \langle \sigma \rangle$-action on \(\frac{\mathbb{R}[x, y]}{(x^2 + y^2 - 1)} \) given by
\[
\sigma x = -x, \quad \sigma y = -y.
\]

Then A cannot be generated by 1 element over R.
Remark

Clearly A can be generated by $(x, -x)$ and $(y, -y)$.

1. If $\zeta = (q(x, y), q(-x, -y))$ generated A then it also generates the trivial étale algebra over $\mathbb{R}[x, y]/(x^2 + y^2 - 1)$.

2. In that case $q(x, y) - q(-x, -y)$ is a unit in $\mathbb{R}[x, y]/(x^2 + y^2 - 1)$.

3. But then $q(x, y) - q(-x, -y) = \lambda \in \mathbb{R}^*$.

4. All homogeneous components of $q(x, y)$ have even degree. Consequently, $q(x, y) = q(-x, -y)$.

5. But then $(q(x, y), q(x, y))$ cannot generate the trivial étale algebra.
Question
Can one produce examples over \mathbb{C}.

Remark
We can produce examples which can’t be generated by $n/2$ elements where $n = \dim R$.