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1 Derivatives
Definition 1. Let f(x) be a function. The derivative of f(x) is another function, usually
denoted by f ′(x), defined by

f ′(x) := lim
h→0

f(x+ h)− f(x)
h

,

wherever this limit exists.

If the limit above exists for x = a, we say that f(x) is differentiable at a and denote
it by either

f ′(a) or df
dx

∣∣∣∣∣
x=a

.

If the limit does not exist, f is not differentiable at a. The function f is said to be
differentiable on an interval if it is differentiable at every point on that interval.
Remark. If the function f is not defined at x = a, since “f(a)” does not exist, the limit
above cannot exist as well. Hence, f cannot be differentiable at a point if its not defined
there.
Remark. We rarely use the definition of the derivative. Rather, we will mainly use some
rules to calculate derivatives after learning the derivatives of some common functions like
polynomials, exponentials, trigonometric functions, etc.

Geometric Interpretation
The geometric interpretation of the concept of derivative starts with what is called “the
tangent line problem.” Suppose we are given the graph of a function, y = f(x), which is nice
and smooth: without any corners or sharp points. Such a graph is shown in blue in Figure 1.
What we want is to find the equation of the line that is tangent to our curve at the point
x = x0.

The tangent line to a curve y = f(x) at the point x = x0 is the line that “just touches”
to the curve at that point. The tangent line to our blue curve at the point x = x0 is shown
in green in Figure 1. This can be understood through our physical intuition.
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Figure 1: The Geometric Interpretation of the Derivative

Suppose we are moving a point particle with a constant speed on our blue curve. At the
moment it reaches to the point x = x0, from left to right, we let it go free. As Newton’s
first law of motion says: if on an inertial frame there is an object, on which there is no force
acting, the object either remains still or moves on a line with a constant speed. So, our
particle’s path will follow the right half of the line shown in green. If we do this also the
other way and let our particle, which is moving with constant speed on our blue curve, and
let it go free when it reaches to point x = x0 from right to left; then its path will follow the
left half our green line. If our curve is nice enough; this combined paths form a line, which
is the tangent line: the line that “just touches” to the curve. What we want to find is the
equation of this line.

In the Euclidean plane, any line that is not vertical is actually the graph of a function of
the form

y = mx+ b,

where m and b are fixed constants. The constant m is called the slope of the line. Using the
Pythagorean theorem, one can see that the value of m is equal to the tangent of the angle,
say θ, at which the line crosses the x-axis.

We would like to find the value of m for our green line. To find it, we choose a point
close to x0, say x0 + h, where h is small; and draw the line connecting the two points on our
blue curve: the points where x = x0 and x = x0 + h. This line is called the secant line, and
is shown in red in Figure 1.

To find the slope of this red line, we look at the right triangle—which has one side in
red—formed in our figure. Using the length of the sides of this triangle, we get,

tanα = Opposite
Adjacent = ∆y

∆x = f(x0 + h)− f(x0)
h

.

Now, if we make h smaller and smaller, and let it approach to 0, we see that “the limit”
of the slopes of these red lines should be equal to the slope of our tangent line, the line in
green. Note that we couldn’t have done this at the point x = x0 only—and so needed a
limit—because there are infinitely-many lines passing from a single point.
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So, if this limit,
lim
h→0

f(x0 + h)− f(x0)
h

,

exists; we call that f is differentiable at the point x = x0, and denote this value by f ′(x0).
The value of the derivative function f ′(x) gives us this limit wherever this limit exists, and
is undefined otherwise.

In conclusion, the tangent line to a function at a point is the line which best “approxi-
mates” the function among all the lines that pass from the given point. The slope of that
line is what we call the derivative. This is the geometric interpretation of the concept of
derivative.

2 Problems
Problem 1 (Exercise 5). Let f(x) = 2x + 3. Confirm using the definition of derivative
that f ′(x) = 2. Why is this plausible?

Solution. Using the definition of the derivative, we get,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

[
2(x+ h) + 3

]
− [2x+ 3]

h

= lim
h→0

2x+ 2h+ 3− 2x− 3
h

= lim
h→0

2h
h

= lim
h→0

2 = 2,

for any x ∈ R.
This is plausible because the tangent line, at any point, to the line y = 2x+ 3 is nothing

but the original line y = 2x+ 3 itself, which has slope 2. �

Problem 2 (Exercise 6). Let f(x) = 1/x. Calculate f ′(x) using the definition of derivative.

Solution. The definition of the derivative gives,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

1/(x+ h)− 1/x
h

= lim
h→0

x/[x(x+ h)]− (x+ h)/[x(x+ h)]
h

= lim
h→0

x− (x+ h)
hx(x+ h)

= lim
h→0

−h
hx(x+ h) = lim

h→0

−1
x(x+ h) = −1

x× x
= − 1

x2 ,

for any x 6= 0. If x = 0, since the function is not defined at x = 0, f(x) cannot be
differentiable at 0. �

Problem 3 (Exercise 4). Sketch the graph, and come up with the expression for, a function
that is continuous everywhere except at x = 2, and differentiable everywhere except at x = 2
and x = 4.
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Solution. Here is a simple one:

f(x) =

4, if x < 4 and x 6= 2;
x, if x ≥ 4.

The graph of f is given in Figure 2.

x

y y = f(x)

2 4

4

0

Figure 2: The Graph of f(x)

First, let us check continuity. If x < 4 and x 6= 2, we have f(x) = 4; and if x > 0, we
have f(x) = x. These are both polynomials and every polynomial is continuous everywhere.
So, f(x) is continuous whenever x is neither 2 nor 4. Moreover, as can be seen from the
graph,

lim
x→4−

f(x) = lim
x→4−

4 = 4,

and
lim

x→4+
f(x) = lim

x→4+
x = 4,

So,
lim
x→4

f(x) = 4 = f(4).

This shows that f is continuous also at x = 4. Finally, since f is not defined at x = 2,
it cannot be continuous there. We have shown that f is continuous everywhere except at
x = 2.

Now let us check differentiability. Suppose x < 4 and x 6= 2; then for small enough h, we
have f(x+ h) = 4. Thus,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

4− 4
h

= lim
h→0

0 = 0.

So, if x < 4 and x 6= 2; the function f is differentiable at x with derivative 0.
Similarly, if x > 4; then for small enough h, we have f(x+ h) = x+ h. Hence,

f ′(x) = lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

(x+ h)− x
h

= lim
h→0

h

h
= 1.
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Therefore, if x > 4; the function f is differentiable at x with derivative 1.
However, if x = 4, we have,

lim
h→0−

f(4 + h)− f(4)
h

= lim
h→0−

4− 4
h

= lim
h→0−

0 = 0,

but
lim

h→0+

f(4 + h)− f(4)
h

= lim
h→0+

(4 + h)− 4
h

= lim
h→0+

h

h
= 1.

Since
lim

h→0−

f(4 + h)− f(4)
h

6= lim
h→0+

f(4 + h)− f(4)
h

,

the limit limh→0
(
[f(4 + h)− f(4)]/h

)
does not exist. So the function f is not differentiable

at x = 4. On the other hand, f is not defined at x = 2, so it cannot be differentiable there.
In summary, we have shown that f is continuous everywhere except x = 2, and that f is

differentiable everywhere except at x = 2 and x = 4. �

3 Supplementary Problems
Problem 4 (Exercise 1). Write down definitions and sketch illustrations of the following
statements.

(a) The function f(x) is right-differentiable at x = a.

(b) The function f(x) has a vertical tangent line at x = a.

Solution. (a) We say that the function f(x) is right-differentiable at x = a if the limit

lim
h→0+

f(x+ h)− f(x)
h

exists.
An example is the function given in the solution of Problem 3 (Exercise 4). Its

graph can be seen on Figure 2. The function f is right-differentiable at x = 4 since, as
done in the solution,

lim
h→0+

f(4 + h)− f(4)
h

= lim
h→0+

(4 + h)− 4
h

= lim
h→0+

h

h
= 1.

(b) We say that the function f(x) has a vertical tangent line at x = a if

lim
h→0

f(a+ h)− f(a)
h

= ±∞.

An example is the function f(x) = 3
√
x− 1 + 2 = (x− 1)1/3 + 2 at x = 1. Its graph

can be seen on Figrue 3. (Note that g(x) = 3
√
x at x = 0 works just fine as well but

the graph of f looks much better.)
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Figure 3: The Graph of f(x)

Observe that

lim
h→0

f(1 + h)− f(1)
h

= lim
h→0

f(1 + h)− f(1)
h

= lim
h→0

[(
(1 + h)− 1

)1/3 + 2
]
−
[
(1− 1)1/3 + 2

]
h

= lim
h→0

h1/3

h
= lim

h→0

1
h2/3 = +∞.

Remark. The function f(x) is not differentiable at x = 1 since infinite limits do not
exist.

�

Problem 5 (Exercise 1). Determine whether each of the following statements is true or
false, and justify your answer.

(a) If f(x) is differentiable; then
∣∣f(x)

∣∣ is differentiable.
(b) If

∣∣f(x)
∣∣ is differentiable; then f(x) is differentiable.

(c) If f(x) has a vertical asymptote x = a; then f(x) is not differentiable at a.

Solution. (a) This statement is false. A counterexample is f(x) = x. The function f is
differentiable everywhere since

lim
h→0

f(x+ h)− f(x)
h

= lim
h→0

x+ h− x
h

= lim
h→0

h

h
= 1

for any x ∈ R. However,
∣∣f(x)

∣∣ = |x| is not differentiable at x = 0. This is because the
limit

lim
h→0

∣∣f(0 + h)
∣∣−∣∣f(0)

∣∣
h

= lim
h→0

|0 + h| −|h|
h

= lim
h→0

|h|
h
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does not exist.

(b) This statement is false as well. A counterexample is the function

f(x) =

1, if x 6= 0;
−1, if x = 0;

at x = 0. Since
∣∣f(x)

∣∣ = 1 everywhere,
∣∣f(x)

∣∣ is differentiable everywhere. In particular∣∣f(x)
∣∣ is differentiable at x = 0. However, since the limit

lim
h→0

f(0 + h)− f(0)
h

= lim
h→0

f(h)− f(0)
h

= lim
h→0

1− (−1)
h

= lim
h→0

2
h

does not exist; the function f is not differentiable at x = 0.

(c) This statement is true. This is because, as given in the solution of Problem 4 part (b),
if f has a vertical asymptote at x = a; then,

lim
h→0

f(a+ h)− f(a)
h

= ±∞.

Since infinite limits do not exist, this limit does not exist; and so f is not differentiable
at x = a.

�
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